Game Theory, Spring 2024 Problem Set \# 5

Daniil Larionov

Due May 15 at 5:15 PM

Exercise 1

1. In Example 3 from Lecture \#7, show that $\left((R, B, r), \mu^{*}=0\right)$ is a sequential equilibrium.
2. In Example 5 from Lecture \#7, check whether its remaining weak perfect Bayesian equilibria are sequential.
3. In Example 8 from Lecture \#7, find all the remaining sequential equilibria, or show that no other sequential equilibrium exists.
4. In Example 9 from Lecture \#7, find all the sequential equilibria, and thus directly show that there is no sequential equilibrium, in which player 1 plays A.

Exercise 2

Find all the sequential equilibria of the following extensive-form game ${ }^{1}$

[^0]

Exercise 3

Consider the following prisoner's dilemma (with $\ell>r>p>s$).

	c	d
c	r, r	s, ℓ
d	ℓ, s	p, p

Suppose it is repeated finitely many times (i.e. $T<\infty$). Show, using backward induction, that the unique subgame-perfect equilibrium outcome is (d, d) in every period for any $\delta \in(0,1]$ and any T.

Exercise 4

Consider the stage game from Example 3 of Lecture \#8:

c	c	k	d
$c \mid$	5,5	0,0	1,6
k	0,0	4,4	0,0
d	6,1	0,0	2,2

Suppose it is played twice. Find all of its subgame-perfect Nash equilibria in pure strategies for each $\delta \in(0,1]$.

[^0]: ${ }^{1}$ This example appears in Chapter 7 of "Advanced Microeconomic Theory" by Geoffrey A. Jehle and Philip J. Reny.

