Game Theory, Spring 2024 Problem Set # 5

Daniil Larionov

Due May 15 at 5:15 PM

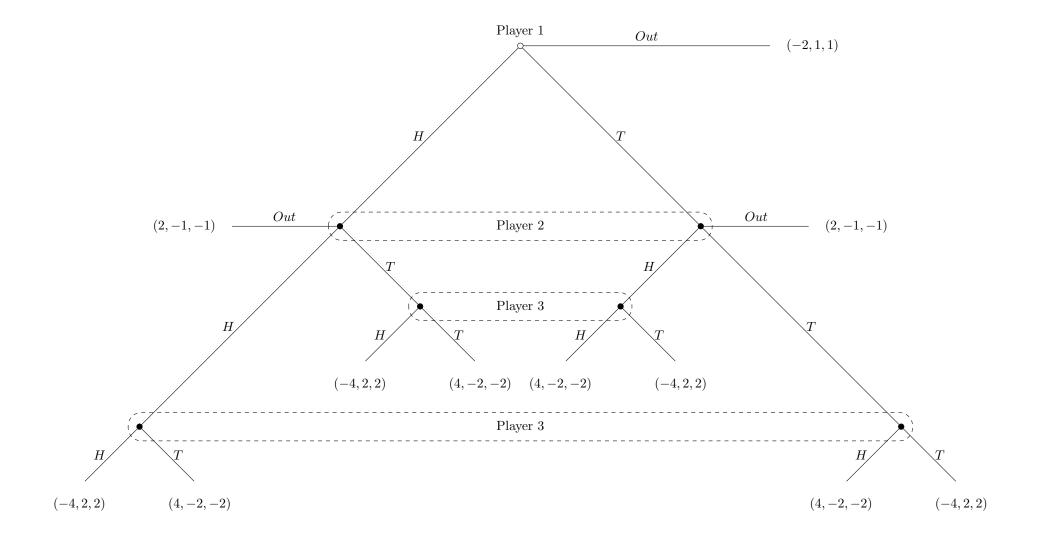
Exercise 1

- 1. In Example 3 from Lecture #7, show that $((R, B, r), \mu^* = 0)$ is a sequential equilibrium.
- In Example 5 from Lecture #7, check whether its remaining weak perfect Bayesian equilibria are sequential.
- 3. In Example 8 from Lecture #7, find all the remaining sequential equilibria, or show that no other sequential equilibrium exists.
- 4. In Example 9 from Lecture #7, find all the sequential equilibria, and thus directly show that there is no sequential equilibrium, in which player 1 plays A.

Exercise 2

Find all the sequential equilibria of the following extensive-form game¹

¹This example appears in Chapter 7 of "Advanced Microeconomic Theory" by Geoffrey A. Jehle and Philip J. Reny.



Exercise 3

Consider the following prisoner's dilemma (with $\ell > r > p > s$).

$$\begin{array}{c|c} c & d \\ c & r, r & s, \ell \\ d & \ell, s & p, p \end{array}$$

Suppose it is repeated finitely many times (i.e. $T < \infty$). Show, using backward induction, that the unique subgame-perfect equilibrium outcome is (d, d) in every period for any $\delta \in (0, 1]$ and any T.

Exercise 4

Consider the stage game from Example 3 of Lecture #8:

	c	k	d
С	5, 5	0, 0	1, 6
k	0,0	4, 4	0, 0
d	6, 1	0, 0	2,2

Suppose it is played twice. Find all of its subgame-perfect Nash equilibria in pure strategies for each $\delta \in (0, 1]$.