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Abstract. I consider a repeated auction setting with colluding buyers and a seller

who adjusts reserve prices over time without long-term commitment. To model the seller’s

concern for collusion, I introduce a new equilibrium concept: collusive public perfect equilib-

rium. For every strategy of the seller I define the corresponding “buyer-game” in which the

seller is replaced by Nature who chooses the reserve prices for the buyers in accordance with

the seller’s strategy. A public perfect equilibrium is collusive if the buyers cannot achieve a

higher symmetric public perfect equilibrium payoff in the corresponding buyer-game. In a

setting with symmetric buyers with private binary iid valuations and publicly revealed bids,

I find collusive public perfect equilibria that allow the seller to extract the entire surplus

from the buyers in the limit as the buyers’ discount factor goes to 1. I therefore show that

a non-committed seller can effectively fight collusion even when she faces patient buyers,

can only set reserve prices, and has to satisfy stringent public disclosure requirements.
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1 Introduction

Auctions rarely involve a one-shot interaction, often buyers and sellers face each

other repeatedly. Procurement decisions for road construction and maintenance, to

take one example, have to be made regularly, and public authorities often have to

deal with the same pool of potential suppliers. Auctions for electromagnetic spectrum,

although less regular, often involve the same pool of potential buyers.

I model a seller who is concerned about collusion among buyers and her own

lack of commitment power. I assume that the seller offers an infinite sequence of

first-price auctions with adjustable reserve prices and has to satisfy stringent public

disclosure requirements: both the reserve prices and the buyers’ bids are publicly

disclosed after each round of trading. The seller can commit to her chosen reserve

price within every period, but does not have enough commitment power to fix the

whole dynamic sequence of reserve prices. With respect to collusion, the seller takes

a rather pessimistic stance: she expects the buyers to take her chosen strategy as

given and try to collectively maximize their own payoff. To model the seller’s concern

for collusion, I introduce a subclass of strongly symmetric public perfect equilibria,

which I call collusive public perfect equilibria. For every public strategy of the seller I

define the corresponding dynamic game among the buyers (“buyer-game”) in which

the reserve prices are chosen by Nature in accordance with the seller’s strategy; I

then select only those equilibria of the repeated first-price auction game, in which

the buyers’ payoff is no smaller than the maximal payoff they could achieve across

all strongly symmetric public perfect equilibria of the corresponding buyer-game. I

call the selected public perfect equilibria collusive. My main goal is to determine the

highest payoff that the seller can obtain in a collusive public perfect equilibrium of

the repeated first-price auction game.

I consider buyers whose valuations are binary, independent and identically dis-

tributed across them and over time. The buyers in my model employ strongly sym-

metric strategies in any public perfect equilibrium of any buyer-game. In essence, the

buyers are prohibited from using more complex asymmetric collusive schemes which

might involve communication and/or bidding strategies dependent on each buyer’s

identity. While it is possible that the seller has less power against a more sophisti-
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cated cartel, it should be noted that in practice asymmetric strategies (due to their

complexity) might require explicit coordination among the buyers, and explicit coor-

dination could be more easily detected and prevented via the traditional instruments

of anti-trust policy. My paper therefore finds a seller’s strategy that is robust to col-

lusive schemes that are simpler and more tacit, and thus harder to detect and prove

to a court.

I study equilibrium outcomes as the buyers’ discount factor goes to 1 and show

that collusion in repeated auctions can be dealt with rather effectively: I construct

collusive public perfect equilibria that achieve full surplus extraction in the limit.

These equilibria are stationary along the equilibrium path, feature higher reserve

prices than the static outcome, and force the buyers to bid even if their valuation is

below the offered reserve price in a given period. Note that, since I am studying a

restricted class of public perfect equilibria, my full surplus extraction results do not

rely on any of the existing folk theorems. Since these theorems refer to the full set of

public equilibrium payoffs, even the mere possibility of full surplus extraction by any

collusive public perfect equilibrium (let alone by a collusive public perfect equilibrium

of any particular structure) is not implied by the existing folk theorems.

To extract full surplus from the buyers, the seller forces the buyer types to separate

and punishes any off-equilibrium path deviations she can detect. In the correspond-

ing buyer-game the buyers take the seller’s threat as given and might try to deviate

to a lower bidding profile. The key to my construction is in identifying the optimal

symmetric joint deviation for the buyers and making sure that the construction ren-

ders this joint deviation unprofitable. Since the low-type buyers are forced to bid

even when their valuation is below the reserve price, the optimal joint deviation will

involve the low-type buyers abstaining from participating and receiving the punish-

ment of zero continuation payoffs, and the high-type buyers bidding at the reserve

price. Unprofitability of this joint deviation together with incentive compatibility of

the buyers’ behavior pins down their on-path bidding actions.

Beyond addressing purely theoretical concerns, my results shed light on how col-

lusion can be dealt with in practice. Note that dealing with collusion in repeated

first-price auctions is especially challenging because of a fundamental conflict be-

tween revenue maximization and fighting collusion. A seller, who wants to maximize
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her revenue, must force different valuation types of the buyers to separate, making

the higher types bid relatively high. But separation creates scope for collusion since,

absent punishments, the buyers would try to coordinate on a lower bidding profile.

Higher patience will only make this coordination process easier for them. What my re-

sults suggest, however, is that the seller can come up with very effective punishments

for colluding buyers. To effectively fight collusion, a revenue-maximizing seller should

force the buyers to pay “upfront” for the continuation of favorable terms of trade,

which is achieved by making the relatively low-valuation types participate even when

they have to bid above their current valuations. Penalization of non-participation

makes sure that the buyers cannot improve their payoff by making the lower types

abstain from the auction altogether and making the higher types take their place in

bidding low. Since the higher valuation types also want to avoid (inefficiently) pooling

with the lower valuation types, they cannot do anything else but bid high.

1.1 Related literature

The dynamic nature of the interaction presents formidable challenges for an auc-

tion designer. Some of those challenges (e.g. intertemporal dependence of agents’

private information) have been addressed by the dynamic mechanism design litera-

ture (see e.g. Pavan et al. (2014), and Bergemann and Välimäki (2019) for a review).

Other important issues however remain. It is well-known that dynamic games of-

ten exhibit a multiplicity of equilibria, which makes the classical mechanism design

assumption of favorable equilibrium selection harder to justify. For example, in re-

peated auction settings, collusive outcomes with lower revenue can be supported in

equilibrium (see e.g. Skrzypacz and Hopenhayn (2004)). Moreover, collusive equi-

libria seem to be practically relevant as collusive bidding has been observed in many

different repeated auction settings around the world (see e.g. Chassang et al. (2022)).

Repeated auctions are special cases of general repeated games. Equilibria of re-

peated games were studied by Abreu et al. (1990), who provide a recursive charac-

terization of equilibrium payoffs for repeated games with imperfect monitoring, and

Fudenberg et al. (1994) who prove a folk theorem for these games. Athey et al.

(2004) introduce (iid) private information into a repeated Bertrand game with im-
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perfect monitoring and apply the recursive characterization of Abreu et al. (1990) to

their game. They show that patient players can sustain high rigid prices in the op-

timal equilibrium, thus extracting a lot of surplus from the consumers. Their model

can be translated to an auction setting with a passive seller who chooses a reserve

price once and for all in the beginning of the game. In the buyer-optimal equilibrium

with patient buyers such a seller would be forced to sell the good at her chosen reserve

price in every period.

Even though the literature on collusion in repeated auctions and oligopolies with

private information is very extensive (see Correia-da-Silva (2017) for a review), very

few papers are concerned with the study of how the seller’s behavior might affect the

buyers’ collusion. Abdulkadiroglu and Chung (2004) consider a stage game design

problem in which a committed seller proposes a mechanism that will become the

stage game played repeatedly by tacitly colluding buyers. The seller in their model

is concerned with buyers coordinating on the buyer-optimal sequential equilibrium

and designs the stage game accordingly. Similarly to my paper, Abdulkadiroglu and

Chung (2004) find a mechanism that extracts the entire surplus from the buyers. In

their mechanism, all the buyers pay the same participation fee to the seller and then

the partnership dissolution mechanism of Cramton et al. (1987) is run. Abdulka-

diroglu and Chung (2004) however note that a non-committed seller will fall far short

of full surplus extraction: in the buyer-optimal sequential equilibrium of the repeated

game, in which the seller moves first and proposes a mechanism, the seller’s revenue

will be zero. In my paper, I propose a less pessimistic (from the seller’s point of view)

equilibrium selection model. While the seller in my model lacks long-term commit-

ment, she is able to control her own strategy and does not have to coordinate on

the worst equilibrium for herself. She cannot however guarantee that the buyers will

coordinate on her preferred equilibrium either. The buyers could take her strategy as

given and tacitly coordinate on a lower bidding profile, hence the seller’s equilibrium

strategy must make such coordination unprofitable for the buyers. Although the seller

has a more active role in equilibrium selection in my model, she is more constrained

in terms of feasible mechanisms: she must offer a first-price auction in every period

and can only adjust reserve prices over time.

Thomas (2005) notices that a seller could make collusion harder for the buyers by
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raising reserve prices, but assumes that the seller moves only once, in the beginning

of time, and chooses one reserve price for the entirety of the repeated game between

the buyers. Zhang (2022) studies a class of collusive agreements between buyers in a

model of repeated first-price auctions, and, as a side note to his main results, shows

how a revenue-maximizing seller should respond to collusion. His seller, much like the

seller in Thomas (2005), moves only once and commits to a single reserve price. As

the discount factor goes to 1, his seller is forced to accommodate “full collusion” with

all the bids being suppressed down to the reserve price, which results in a revenue

far short of full surplus. Iossa et al. (2023) study collusion mitigation strategies

in the context of an infinite-horizon model with two suppliers and two buyers who

simultaneously offer (reverse) first-price auctions to the buyers. Along with other

mitigation strategies, Iossa et al. (2023) consider the use of reserve prices to deter

collusion among the suppliers. Like in Thomas (2005) and Zhang (2022), their buyers

commit to a single reserve price in the beginning of the game, and therefore also obtain

far less than full surplus when the discount factor is close to 1.

Ortner et al. (2022) are also concerned with mitigating the effects of collusion in

repeated reverse auctions. They propose a model with a regulator who observes the

whole (infinite) bidding history and can punish colluding bidders. They construct

tests for detecting collusive patterns of behavior which only allow for false negatives

– therefore competitive bidders pass them with probability one. The regulator can

then use the outcomes of the tests to punish the colluding bidders. In contrast to

their work, my seller only has access to finite histories of bids and can only use reserve

prices to punish the buyers.

Bergemann and Hörner (2018) study a binary type model of first-price auctions

similar to mine. The seller in their model is however passive and does not set a

reserve price at all, and the buyers’ valuations are perfectly persistent. They look

at disclosure regimes regarding the bidding and the winning histories. In contrast

to the findings in my paper, they show that the maximal disclosure regime leads to

inefficient equilibria with low revenues. I show that an active seller who can adjust

reserve prices over time can extract full surplus even when the full history of bids and

identities of the winning buyers is publicly disclosed.

My paper is also related to the literature on collusion in static auctions. This
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literature was initiated by McAfee and McMillan (1992), who study the outcomes

of explicit before-auction communication in a first-price auction setting. They solve

for optimal collusive schemes with (“strong collusion”) and without transfers (“weak

collusion”). In the optimal weak collusion scheme, the bidders bid at the reserve

price as long as their valuation exceeds it and abstain otherwise. In the optimal

strong collusion scheme, the colluding buyers can obtain a higher expected payoff

by running a “knock-out” auction among themselves. The winner of the knock-out

auction bids at the reserve price (as long as it exceeds his valuation) in the legitimate

auction, and the losers are compensated for abstaining from the legitimate auction.

It is however known now, that in the static setting the seller can avoid the dramatic

losses from collusion via more sophisticated auction design. Che and Kim (2009) show

that the second-best auction can be made collusion-proof, even when the bidders can

use transfers to collude.

Finally, my paper speaks to the large literature on robustness in mechanism design

(see Carroll (2019) for a comprehensive review). In my paper the seller aims to be

robust to collusive behavior of the buyers.

1.2 Roadmap

The rest of the paper is organized as follows: Section 2 introduces the model of

a repeated first-price auction game. In Section 3, I introduce the definitions of a

buyer-game and a collusive public perfect equilibrium. In Section 4, I state the main

result of the paper by explicitly constructing collusive public perfect equilibria that

allow the seller to extract full surplus in the limit. Sections 5, 6, and 7 are devoted

to proving the main result. Section 8 briefly discusses the optimal reserve prices.

Finally, Section 9 concludes.

2 Model

2.1 Setup

There is a seller (player 0) and n ≥ 2 buyers (players 1, . . . , n) who interact over

infinitely many periods. The seller sells one unit of a private good in every period

via a first-price auction with a reserve price. Each buyer is privately informed about
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his valuation type, which is drawn from a binary set Θ = {θ, θ}, with 0 ≤ θ < θ, iid

across periods and buyers. The probability of the low type θ is q ∈ (0, 1). The buyers

share a common discount factor δ ∈ (0, 1). The seller’s discount factor is δ0 ∈ (0, 1).

The timing of each period is as follows:

1. Seller announces a reserve price r.

2. Buyers privately learn their valuations for the good in the current period.

3. Buyers bid or abstain (∅) in the first-price auction with the reserve price r.

4. The winner (if any) is determined, the buyers’ choices are publicly disclosed.

The action set of the seller is A0 = R+, the action set of each buyer is A = {∅}∪R+.

Buyer i’s payoff is equal to his valuation θi net of his bid bi if he wins the auction,

and zero otherwise. Ties are broken uniformly. Formally,

ui(r, b, θi) =


1

#(win)
(θi − bi), if bi ≥ r &

(
bi = max{b1, ..., bn} or b−i = (∅, . . . , ∅)

)
0, otherwise

,

where #(win) stands for the number of winners in the auction, i.e. the number of

buyers who placed the highest bid. The seller’s revenue is equal to the highest bid if

there is a buyer who bids above his reserve price, and zero otherwise:

R(r, b) =

bi, if bi ≥ r &
(
bi = max{b1, ..., bn} or b−i = (∅, . . . , ∅)

)
0, otherwise

.

2.2 One-shot auctions

Before we turn our attention to the repeated auction problem, let us consider

equilibria of the stage game. The intuition here is straightforward. If there are

relatively few low types in the population (small q), the seller will prefer to trade

with high types only, and will therefore set the reserve price to θ. The low-type

buyers will abstain while the high-type buyers will bid their valuation θ. If there are

relatively many low types in the population (large q), the seller will prefer to trade

with both types, and will therefore set the reserve price to θ. The low-type buyers

will bid their valuation while the high-type buyers will play a mixed strategy whose

support lies above θ. Proposition 0 characterizes equilibrium payoffs:
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Proposition 0 (One-shot auction equilibrium payoffs). The following are the

equilibrium payoffs in the one-shot auction:

• In the High-reserve-price region
(
q < n(θ−θ)

θ+n(θ−θ)

)
, the seller sets r∗os = θ and

generates revenue R∗
os = (1− qn)θ; the buyers get the ex ante payoff v∗os = 0.

• In the Low-reserve-price region
(
q ≥ n(θ−θ)

θ+n(θ−θ)

)
, the seller sets r∗os = θ and

generates revenue R∗
os = (1 − qn)θ + qnθ − n(1 − q)qn−1(θ − θ); the buyers get

the ex ante payoff v∗os = (1− q)qn−1(θ − θ).

The proof of Proposition 0 is well-known and therefore omitted. Interested readers

can find it in the Supplementary Material.

3 Collusive Public Perfect Equilibrium

3.1 Motivation

Let us consider the Low-reserve-price region and the infinite repetition of the

associated one-shot equilibrium. Clearly, it is an equilibrium of the infinitely repeated

auction game, but there is no reason to believe that the players will actually coordinate

on it. In fact, the possibility of buyers’ collusion provides a good reason to believe

otherwise. Suppose the buyers, instead of coordinating on their one-shot equilibrium

strategies, use a different bidding profile, in which any high-type buyer bids b = θ and

any low-type buyer abstains in every period. The new bidding profile gives a lower

revenue of (1− qn)θ to the seller and a higher payoff of 1
n
(1− qn)(θ−θ) to the buyers.

The buyers can support their new bidding profile using a “grim-trigger” strategy,

which punishes deviations by moving back to the one-shot equilibrium strategies of

the Low-reserve-price region; the buyers only have to make sure that the high types

do not want to deviate to θ + ϵ, i.e. that

(1− δ)
1− qn

n(1− q)
(θ − θ) + δ

1

n
(1− qn)(θ − θ)︸ ︷︷ ︸

Payoff of a high type from b=θ, b=∅

≥ (1− δ)(θ − θ)︸ ︷︷ ︸
Deviation payoff today

+ δ(1− q)qn−1(θ − θ)︸ ︷︷ ︸
Grim punishment payoff

,

which can be satisfied for high enough values of δ.

As we can see, the infinite repetition of the one-shot equilibrium in the Low-

reserve-price region is not “collusive” in the sense that the buyers do not exploit

their ability to collude to the fullest extent possible. A seller who has concerns
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about buyers’ collusion should not hope to end up in such an equilibrium and needs

to consider more sophisticated strategies. The seller’s equilibrium strategy should

however always guarantee that the buyers cannot improve their payoff similarly to

how they did it in the above example. I formalize this requirement by introducing

the concept of collusive public perfect equilibrium.

3.2 Definition

A collusive public perfect equilibrium is a strongly symmetric public perfect equi-

librium that satisfies two novel requirements:

1. Collusiveness on path. The buyers must collude given the seller’s on-path

play of her equilibrium strategy. Central to this requirement is the notion of a

buyer-game I formally introduce below in Definition 3. The buyer-game corre-

sponding to a seller’s strategy is a stochastic first-price auction game between

the buyers, in which the reserve prices are determined according to the seller’s

strategy. Collusiveness on path requires that the buyers be unable to improve

their payoff by moving to a different strongly symmetric public perfect equi-

librium in the buyer-game induced by the seller’s equilibrium strategy. In the

above example of the infinite repetition of the Low-reserve-price region equilib-

rium collusiveness on path was violated since the buyers could improve their

payoff by moving to a different equilibrium between themselves. See Subsection

3.2.1 for a formal definition of collusiveness on path.

2. Collusiveness off path. As long as the buyers stick to their equilibrium

strategies, the continuation play must be collusive on path (in the sense of the

first requirement) regardless of seller’s actions. Collusiveness off path formalizes

the idea that buyers’ collusive agreements cannot be broken by seller’s actions.

It does however allow non-collusive equilibria to be played following buyers’

deviations and thus imposes no restriction on the buyers’ ability to punish

deviators from their collusive agreements. See Subsection 3.2.2 for a formal

definition of collusiveness off path.

Strongly symmetric public perfect equilibrium is a public perfect equilibrium, in

which buyers take symmetric actions on and off the equilibrium path. Public perfect
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equilibrium is an equilibrium in public strategies, i.e. strategies which map public

histories into players’ actions. A public history in the beginning of period t + 1

is a sequence that includes all the actions taken by each player up to that period:(
Ø, (r0, b10, . . . , bn0), . . . , (rt, b1t, . . . , bnt)

)
, where Ø denotes the initial history. The set

of those histories is H0 ≡ ∪∞
t=0

(
A0×An

)t
, with a typical period-t history denoted ht

0.

Since the buyers additionally observe the action taken by the seller in every period, the

set of public histories at which they get to make a move is H ≡ ∪∞
t=0

[(
A0×An

)t×A0

]
with a typical period-t history denoted ht. A pure public strategy for the seller is a

mapping σ0 : H0 → A0, for the buyers it is σi : H×Θ → A.

The expected payoff of the seller is given by:

U0(σ) = (1− δ0)E
∞∑
t=0

δt0R
(
σ0(h

t
0), σi(h

t, θit), σ−i(h
t, θ−it)

)
.

The expected payoff of the buyers i = 1, 2, ..., n is given by:

Ui(σ) = (1− δ)E
∞∑
t=0

δtui

(
σ0(h

t
0), σi(h

t, θit), σ−i(h
t, θ−it), θit

)
.

The above definitions extend naturally to behavioral strategies.

Definition 1 (Strongly symmetric public perfect equilibrium). A strategy

profile (σ∗
0, σ

∗
1, ..., σ

∗
n) is a strongly symmetric public perfect equilibrium if

1. it induces a Nash equilibrium after every public history h0 ∈ H0 and h ∈ H;

2. σ∗
i (h, θ) = σ∗

j (h, θ) after any public history h ∈ H for any buyers i, j and any θ.

The first condition of Definition 1 rules out non-credible threats at every public

history much like subgame perfect equilibrium rules out non-credible threats in every

subgame. The second condition makes sure that the buyers use symmetric bidding

actions on and off the equilibrium path. Note that strongly symmetric public perfect

equilibria have recursive structure: the continuation play after any public history is

itself a strongly symmetric public perfect equilibrium.

All strongly symmetric public perfect equilibria I construct below, except the

infinite repetition of the one-shot equilibrium in the Low-reserve-price region, satisfy

the following additional assumption:

Assumption 1(a) (Pure bidding actions on path). Buyers use pure bidding

actions on path: after any public history h ∈ H consistent with the on-path play of

(σ∗
0, σ

∗, . . . , σ∗), the action σ∗(h, θ) is pure for both θ ∈ {θ, θ}.
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Assumption 1(a) itself is not restrictive since we can construct a full-surplus-

extracting strongly symmetric public perfect equilibrium that belongs to the class of

equilibria allowed by Assumption 1(a). However, I make a similar assumption in the

next subsection (Assumption 1(b)), which forces the buyers to play the same class of

equilibria in any buyer-game, restricting the set of collusive schemes they could use.

It is an open question whether Assumptions 1(a) and 1(b) could be dispensed with.

3.2.1 Collusiveness on path

To define collusiveness on path formally, we have to introduce the notion of the

buyer-game induced by a seller’s strategy. To define the states in the buyer-game,

we first define the path automaton of a seller’s strategy1. In order to do that, fix a

particular pure public strategy2 of the seller σ0. Let H̃0(σ0) be the set of histories

consistent with the seller’s play of σ0 and any profile of buyers’ strategies3. Two

histories h0 and h′
0 from H̃0(σ0) are called σ0-equivalent if they prescribe the same

continuation play for the seller according to σ0, i.e. if σ0|h0 = σ0|h′
0
. Let Ω be the

resulting set of equivalence classes with ω0 being the equivalence class of the initial

history Ø. The path automaton of σ0 is defined as follows:

Definition 2 (Path automaton of a seller’s strategy). The path automaton of

σ0 is the tuple
(
Ω, ω0, r, τ

)
, where

• r : Ω → A0 is the decision rule satisfying r(ω) = σ0(h0) for any h0 ∈ ω.

• τ : Ω× An → Ω is the transition function satisfying τ(ω, b) = w′ if and only if

for any history h0 ∈ w the concatenated history (h0, r(ω), b) ∈ w′.

We can now introduce the formal definition of the buyer-game induced by σ0:

1Unlike an automaton, the path automaton of a seller’s strategy assumes that the seller never

deviates from σ0, and therefore represents only part of her repeated game strategy. See Kandori and

Obara (2006) who use a similar definition in the context of repeated games with private monitoring.
2It is wlog to restrict attention to pure strategies of the seller, since our goal is to construct a full-

surplus-extracting collusive public perfect equilibrium, which can be achieved under this restriction.
3A typical element of H̃0(σ0) can be written as ht

0 =(
Ø,

(
σ0(Ø), b0

)
,

(
σ0(h

1
0), b1

)
, . . . ,

(
σ0(h

t−1
0 ), bt−1

))
; where h1

0 =
(
σ0(Ø), b0

)
,

h2
0 =

((
σ0(Ø), b0

)
,
(
σ0(h

0
0), b1

))
, etc.
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Definition 3 (Buyer-game). Let
(
Ω, ω0, r, τ

)
be the path automaton of σ0. The

buyer-game induced by σ0 is a stochastic game between the buyers, where:

• The set of actions for each buyer is A, i.e. as in the repeated auction game.

• The set of states is Ω, the initial state ω0. Transitions occur according to τ .

• The set of valuations is Θ, i.e. as in the repeated auction game.

• The utility of buyer i with type θi bidding bi in state ω is

ũi(ω, b, θi) =


1

#(win)
(θi − bi), if bi ≥ r(ω) &

(
bi = max{b1, ..., bn} or b−i = ∅

)
0, otherwise

,

where #(win) is the number of winners in the auction.

Let us look at the strongly symmetric public perfect equilibria of the buyer-game

induced by σ0. A public history at period t + 1 in the buyer-game includes all

states and bids up to period t + 1:
(
ω0, (b10, . . . , bn0), . . . , ωt, (b1t, . . . , bnt), ωt+1

)
. Let

H(σ0) be the set of these public histories. A pure public strategy in the buyer game

is a function ρi : H(σ0) × Θ → A. This definition extends naturally to behavioral

strategies. A strongly symmetric public perfect equilibrium of the buyer-game induced

by a seller’s strategy σ0 is defined as follows:

Definition 4 (Equilibrium of a buyer-game). A strategy profile (ρ∗1, . . . , ρ
∗
n) is a

strongly symmetric public perfect equilibrium of the buyer-game induced by σ0 if

1. it induces a Nash equilibrium after any public history h ∈ H(σ0);

2. ρ∗i (h, θ) = ρ∗j(h, θ) for any h ∈ H(σ0), any buyers i, j and any θ.

Recall that by Assumption 1(a) the buyers use pure actions on path of any strongly

symmetric public perfect equilibrium of the repeated auction game. Assumption 1(b)

restricts the buyers to play equilibria from the same class in any buyer-game:

Assumption 1(b) (Pure bidding actions on path of a buyer-game). For any

seller’s strategy σ0, the buyers use pure bidding actions on path in the buyer-game

induced by σ0, i.e. after any public history h ∈ H(σ0) consistent with the on-path

play of (ρ∗, . . . , ρ∗), the action ρ∗(h, θ) is pure for both θ ∈ {θ, θ}.

Assumption 1(b) does not allow the buyers to collude by moving to a strongly

symmetric public perfect equilibrium of the buyer game that involves using mixed
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actions along the equilibrium path. This assumption may be restrictive as it could

in principle be possible that the buyers could collectively benefit from using mixed

actions in the buyer-games induced by the full-surplus-extracting collusive equilibria

constructed in Section 4 below. It can however be shown that the simplest collusive

schemes with mixed actions do not help the buyers to improve their payoff4. The

bigger question of whether Assumption 1(b) could be dispensed with remains open.

We can now use the above definitions to formally introduce collusiveness on path:

Definition 5 (Collusiveness on path). A strongly symmetric public perfect equi-

librium (σ∗
0, σ

∗, ..., σ∗) of the repeated auction game is collusive on path if there is no

strongly symmetric public perfect equilibrium with pure actions along the equilibrium

path (satisfying Assumption 1(b)) in the buyer-game induced by σ∗
0, whose equilibrium

payoff exceeds the buyers’ payoff from (σ∗
0, σ

∗, ..., σ∗) in the repeated auction game.

3.2.2 Collusiveness off path

Recall that the requirement of collusiveness off path formalizes the idea that buy-

ers’ collusive agreements cannot be broken by seller’s actions: if the buyers have

played their equilibrium actions up to a given period, then they must keep colluding

on path no matter what the seller has played. Here is the formal definition:

Definition 6 (Collusiveness off path). Suppose (σ∗
0, σ

∗, . . . , σ∗) is a strongly sym-

metric public perfect equilibrium of the repeated auction game. Consider an alternative

seller’s strategy σ′
0 and let ht

0 ∈ H0 be a period-t history consistent with the on-path

play of (σ′
0, σ

∗, . . . , σ∗). If the continuation equilibrium (σ∗
0|ht

0
, σ∗|ht

0
, . . . , σ∗|ht

0
) is col-

lusive on path for any such ht
0 and σ′

0, then (σ∗
0, σ

∗, . . . , σ∗) is collusive off path.

Summarizing the above, I can state the main definition formally:

Definition 7 (Collusive public perfect equilibrium). A strongly symmetric pub-

lic perfect equilibrium of the repeated auction game is a collusive public perfect equi-

librium if it is collusive on and off path.

4E.g. some stationary schemes, in which the high types mix over two bidding actions on path,

do not improve the buyers’ payoff because of their efficiency loss vis-à-vis fully separating behavior.
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Remark 1. The infinite repetition of the one-shot equilibrium in the High-reserve-

price region is a collusive public perfect equilibrium. It is clearly a strongly symmetric

public perfect equilibrium. To show collusiveness on path, observe that the buyers get

zero along the equilibrium path, and it is not possible to improve their payoff once the

seller’s on-path play is fixed: bidding below θ also leads to a zero payoff, bidding above

θ can only lead to losses. After a deviation by any player the play returns to the same

equilibrium in the next period, hence it is also collusive off path.

4 Main result: full surplus extraction

I will now explicitly introduce a class of strategy profiles that allow the seller to

extract full surplus in the limit as the buyers’ discount factor δ goes to 1. These

strategy profiles are stationary and separating on path. Their full formal description

is given by Definition 8.

Definition 8 (High-revenue strategy profiles). Fix a pair of bids (b, b). To

define the high-revenue strategy profiles corresponding to (b, b), we distinguish

three cases. In all three cases, the on-path behavior is the same: the game starts in

the High-revenue state (High-rev). In (High-rev) any low-type buyer bids b and

any high-type buyer bids b, and the seller sets the reserve price equal to the bid of a

low-type buyer, r = b. As long as the seller sets r = b and no buyer deviates to a bid

outside {b, b}, the play remains in (High-rev).

Off path, the following three definitions apply, depending on the parameter values:

(i) In the High-reserve-price region, there is additionally a continuum of states

(One-shot [r′]) with one state for each r′ ∈ [0,+∞), and the (One-shot)-

state. The following applies:

• If, in (High-rev), the seller deviates to a reserve price r′ ̸= b, then the

play switches to (One-shot [r′]). If, in (High-rev), a buyer deviates to

a bid outside of {b, b}, the play switches to (One-shot).

• In any (One-shot [r′]), the buyers play the equilibrium of the one-shot

auction with the reserve price r′ once, the play then immediately switches

to (One-shot).
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High-rev

One-shot [r′] One-shot

r = b, ∀ bi ∈ {b, b}

r = b, ∃ bi ̸∈ {b, b}r′ ̸= b

Figure 1: High-revenue strategy profile in the High-reserve-price region.

• In (One-shot), the one-shot equilibrium of the High-reserve-price region

is infinitely repeated.

This case is illustrated by Figure 1.

(ii) In the Low-reserve-price region with q ≥ θ

θ−θ
, there are four additional states:

the high-reserve-price state (HRP), the abstention state (Abstain), the low-

revenue-separating state (LRS), the (One-shot)-state. The following applies:

• If, in (High-rev), the seller deviates to a reserve price r′ ̸= b, then the

play switches to (Abstain). If, in (High-rev), a buyer deviates to a bid

outside of {b, b}, then the play switches to (HRP).

• In (HRP), the seller sets rhrp = θ, any low-type buyer abstains, and any

high-type buyer bids bhrp = θ. As long as the seller plays rhrp = θ, the play

remains in (HRP). If, in (HRP), the seller deviates to a reserve price

r′ ̸= θ, then the play switches to (Abstain).

• In (Abstain), the buyers of both types abstain, and afterwards the play

immediately switches to (LRS). If, in (Abstain), a buyer deviates and

places a bid, the play switches to (One-shot).

• In (LRS), the seller sets rlrs = 0, any low-type buyer bids blrs = 0, and

any high-type buyer bids blrs =
1−qn−1

1−qn
θ. As long as the seller sets rlrs = 0

and no buyer deviates to a bid outside of {blrs, blrs}, the play remains in

16



(LRS). If, in (LRS), the seller deviates to a reserve price r′ ̸= 0, then

the play switches to (Abstain). If, in (LRS), a buyer deviates to a bid

outside of {blrs, blrs}, the play switches to (One-shot).

• In (One-shot), the one-shot equilibrium of the Low-reserve-price region

is infinitely repeated.

This case is illustrated by Figure 2a.

(iii) In the Low-reserve-price region with q < θ

θ−θ
, there are four additional states:

the high-reserve-price state (HRP), the abstention state (Abstain), the zero-

revenue-pooling state (ZRP), the (One-shot)-state. The following applies:

• If, in (High-rev), the seller deviates to a reserve price r′ ̸= b, then the

play switches to (Abstain). If, in (High-rev), a buyer deviates to a bid

outside of {b, b}, then the play switches to (HRP).

• In (HRP), the seller sets rhrp = θ, any low-type buyer abstains, and any

high-type buyer bids bhrp = θ. As long as the seller plays rhrp = θ, the play

remains in (HRP). If, in (HRP), the seller deviates to a reserve price

r′ ̸= θ, then the play switches to (Abstain).

• In (Abstain), the buyers of both types abstain, and afterwards the play

immediately switches to (ZRP). If, in (Abstain), a buyer deviates and

places a bid, the play switches to (One-shot).

• In (ZRP), the seller sets rzrp = 0, and both buyer types pool at zero, i.e.

bzrp = bzrp = 0. As long as the seller sets rzrp = 0 and all buyers bid zero,

the play remains in (ZRP). If, in (ZRP), the seller deviates to a reserve

price r′ ̸= 0, then the play switches to (Abstain). If, in (ZRP), a buyer

deviates to a non-zero bid, the play switches to (One-shot).

• In (One-shot), the one-shot equilibrium of the Low-reserve-price region

is infinitely repeated.

This case is illustrated by Figure 2b.
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High-rev

HRP LRS

Abstain One-shot

r = b, ∀bi ∈ {b, b}

r = b, ∃bi /∈ {b, b}

r′ ̸= b
rhrp = θ

r′ ̸= θ

∀bi = ∅

r′ ̸= 0

∃bi ̸= ∅

rlrs = 0,

∀bi ∈
{
blrs, blrs

}

rlrs = 0,

∃bi /∈
{
blrs, blrs

}

(a) Low-reserve-price region and q ≥ θ

θ−θ
.

High-rev

HRP ZRP

Abstain One-shot

r = b, ∀bi ∈ {b, b}

r = b, ∃bi ̸∈ {b, b}

r′ ̸= b
rhrp = θ

r′ ̸= θ

∀bi = ∅

r′ ̸= 0

∃bi ̸= ∅

rzrp = 0,

∀bi = 0

rzrp = 0,

∃bi ̸= 0

(b) Low-reserve-price region and q < θ

θ−θ
.

Figure 2: High-revenue strategy profiles in the Low-reserve-price region.
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To formulate the main result, I set up the following revenue maximization problem:

RM : R∗
fse(δ) ≡ max

b,b,v
(1− qn)b+ qnb, s.t.

(Eq-payoff) v =
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
;

Incentive constraints:

(LowIC) (1− δ)
qn−1

n
(θ − b) + δv ≥ 0,

(HighIC-up) (1− δ)
1− qn

n(1− q)
(θ − b) + δv ≥ (1− δ)(θ − b),

(HighIC-down) (1− δ)
1− qn

n(1− q)
(θ − b) + δv ≥ (1− δ)qn−1(θ − b),

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b) ≥ qn−1

n
(θ − b);

Collusiveness constraints:

(Col-sep-1) v ≥ (1− δ)(1− qn)(θ − b)

n(1− δ(1− q)n)
,

(Col-sep-2) v ≥
(1− δ)

[
(1− qn)(θ − b) + qn(θ − b)

]
n(1− δqn)

,

(Col-pool) v ≥ 1

n

[
(1− q)(θ − b) + q(θ − b)

]
.

I can now formulate the main result of the paper:

Theorem 1. Suppose
(
b
∗
, b∗, v∗fse

)
solves the revenue maximization problem RM,

then there exists a critical buyers’ discount factor δ∗, such that for all δ ∈ (δ∗, 1)

and for all δ0 ∈ (0, 1) the high-revenue strategy profiles corresponding to (b
∗
, b∗) are

collusive public perfect equilibria of the repeated auction game in all three cases (i),

(ii), (iii) of Definition 8. Moreover, limδ→1R∗
fse(δ) = (1 − qn)θ + qnθ, i.e. the seller

achieves full surplus extraction in the limit as the buyers’ discount factor δ goes to 1.

The rest of the paper will be mostly devoted to proving Theorem 1. I will divide

the proof of Theorem 1 into two propositions. I will first prove the following:

Proposition 1. Suppose
(
b
∗
, b∗, v∗fse

)
solves the revenue maximization problem RM.

Suppose further that θ < b∗ < b
∗
and R∗

fse(δ) ≥ (1 − qn)θ, then the high-revenue

strategy profiles corresponding to
(
b
∗
, b∗

)
are collusive public perfect equilibria of the

repeated auction game for any seller’s discount factor δ0 ∈ (0, 1)

(i) in Case (i),

19



(ii) if δ > nθ
/[
nθ + (1− qn − n(1− q)qn−1)(θ − θ) + qn−1θ

]
in Case (ii),

(iii) if δ > nθ
/[
nθ + qθ + (1− q)θ − n(1− q)qn−1(θ − θ)

]
in Case (iii).

To prove Proposition 1, I will establish that the high-revenue strategy profiles cor-

responding to (b
∗
, b∗) satisfy on-path incentive compatibility (Lemma 1 in Subsection

5.1), off-path incentive compatibility (Lemma 2 in Subsection 5.2), collusiveness on

path (Lemma 3 in Subsection 6.1), and collusiveness off path (Lemma 5 in Subsection

6.2) in all three cases (i), (ii), and (iii) of Definition 8.

I will then prove the following proposition:

Proposition 2. If
(
b
∗
, b∗, v∗fse

)
solves the revenue maximization problem RM, then

there exists a critical buyers’ discount factor δ∗ such that for all δ ∈ (δ∗, 1) we have

θ < b∗ < b
∗
. Moreover, limδ→1R∗

fse(δ) = (1− qn)θ + qnθ.

In Section 7, I will prove Proposition 2 by solving RM, verifying that its solutions

satisfy the conditions of Proposition 1 for sufficiently high δ’s, and showing that the

seller’s revenue goes to full surplus as δ goes to 1. Section 7 will thus complete the

proof of Theorem 1.

5 Incentive compatibility

5.1 On-path incentive compatibility

Lemma 1 (On-path incentive compatibility). If the conditions of Proposition

1 are satisfied, then the high-revenue strategy profiles corresponding to
(
b
∗
, b∗

)
are

on-path incentive compatible in all three cases (i), (ii), (iii) of Definition 8.

Proof. Incentive compatibility of the buyers. Let us start by showing that the buyers’

on-path behavior satisfies incentive compatibility constraints. Note that the follow-

ing argument simultaneously covers all three cases (i), (ii), and (iii) of Definition 8.

We consider two classes of deviations: off-schedule deviations, which involve buyers’

choosing an off-path action and on-schedule deviations, which involve buyers’ mim-

icking the behavior of another type. Let us start with on-schedule deviations. The

on-schedule deviation is unprofitable for a low-type buyer as long as:

qn−1

n
(θ − b∗)︸ ︷︷ ︸

On-path reward

≥ 1− qn

n(1− q)
(θ − b

∗
)︸ ︷︷ ︸

Mimic a high type

,
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which is satisfied since θ < b∗ < b
∗
: if a low-type buyer deviates to b

∗
, then he receives

a lower payoff with a higher probability, which cannot be profitable. The on-schedule

deviation is unprofitable for a high-type buyer as long as:

1− qn

n(1− q)
(θ − b

∗
)︸ ︷︷ ︸

On-path reward

≥ qn−1

n
(θ − b∗)︸ ︷︷ ︸

Mimic a low type

,

which is the incentive constraint (HighIC-on-sch) of the revenue maximization prob-

lem RM evaluated at (b
∗
, b∗), and is therefore satisfied.

Consider now off-schedule deviations. First of all, we must make sure that a low-

type buyer is actually willing to participate in the auction as opposed to abstaining

and getting zero continuation value, i.e. that

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse︸ ︷︷ ︸

On-path payoff of a low-type buyer

≥ (1− δ) 0︸︷︷︸
Abstain

+δ 0︸︷︷︸
(HRP)

= 0,

which is the incentive constraint (LowIC) of the revenue maximization problem RM

evaluated at (b
∗
, b∗, v∗fse) and is thus satisfied. If a low-type buyer deviates to a higher

off-schedule bid, then he receives a negative expected reward in the period of the

attempted deviation (since θ < b∗) and zero continuation value, which cannot be

profitable since he gets a positive payoff along the equilibrium path. The remaining

off-schedule incentive constraints of a low-type buyer are thus satisfied at
(
b
∗
, b∗, v∗fse

)
.

Consider now off-schedule deviations of a high-type buyer. A high-type buyer

could deviate upwards which would guarantee him winning the auction with proba-

bility 1. The best upward deviation is to b
∗
+ ϵ, which gives the deviator a payoff

almost equal to θ − b
∗
. For this deviation to be unprofitable, we must have:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse︸ ︷︷ ︸

On-path payoff of a high-type buyer

≥ (1− δ) (θ − b
∗
)︸ ︷︷ ︸

Deviate to b
∗
+ϵ

+δ 0︸︷︷︸
(HRP)

= (1− δ)(θ − b
∗
),

which is the incentive constraint (HighIC-up) of the revenue maximization problem

RM evaluated at (b
∗
, b∗, v∗fse), and is therefore satisfied.

A high-type buyer could also deviate downwards and win the auction only in

the case when all his competitors are low-type buyers, i.e. with probability qn−1, or

abstain from the auction altogether. Observe that θ < b∗ < b
∗
together with (LowIC)
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implies that v∗fse > 0 and therefore θ > b
∗
> b∗. The best downward deviation is then

to b∗ + ϵ with a payoff almost equal to θ − b∗. This deviation is unprofitable when

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse︸ ︷︷ ︸

On-path payoff of a high-type buyer

≥ (1− δ) qn−1(θ − b∗)︸ ︷︷ ︸
Deviate to b∗+ϵ

+δ 0︸︷︷︸
(HRP)

= (1− δ)qn−1(θ − b∗),

which is the incentive constraint (HighIC-down) of the revenue maximization problem

RM evaluated at (b
∗
, b∗, v∗fse), and is therefore satisfied.

Incentive compatibility of the seller. Consider now the seller’s actions. Recall that

we have R∗
fse(δ) ≥ (1 − qn)θ by assumption. Consider Case (i) first. In this case, a

deviation to r′ ̸= b∗ would bring the seller the revenue of (1− δ0)R∗
os,r′ +δ0(1− qn)θ

where R∗
os,r′ is the revenue achieved by her in the one-shot auction game with the

reserve price equal to r′. Recall from Proposition 0 that the optimal reserve price

in the High-reserve-price region is ros = θ with the associated revenue of (1 − qn)θ.

Thus the seller would not be able to get more than (1− δ0)(1− qn)θ + δ0(1− qn)θ =

(1−qn)θ ≤ R∗
fse(δ). Consider now Cases (ii) and (iii). If the seller deviates to r′ ̸= b∗,

she will receive either δ0(1 − qn−1)θ in Case (ii), or 0 in Case (iii), neither of which

can exceed (1− qn)θ ≤ R∗
fse(δ) for any value of δ0 ∈ (0, 1).

5.2 Off-path incentive compatibility

Lemma 2 (Off-path incentive compatibility). If the conditions of Proposition

1 are satisfied, then the high-revenue strategy profiles corresponding to
(
b
∗
, b∗

)
are

off-path incentive compatible in all three cases (i), (ii), (iii) of Definition 8.

Proof. We consider the three cases of Definition 8 one by one.

Case (i). The play in (One-shot) is trivially a stronlgy symmetric public perfect

equilibrium since it infinitely repeats the High-reserve-price region one-shot equilib-

rium. Consider the play in (One-shot [r′]) for any r′. By Definition 8, the play

switches to (One-shot) from (One-shot [r′]) no matter what the buyers do in

(One-shot [r′]). In the High-reserve-price region, the buyers’ payoff in (One-shot)

is zero, hence the buyers should play as if the game ends in (One-shot [r′]), i.e. play

the equilibrium of the one-shot first price auction with the reserve price set to r′.

Case (ii). The play in (One-shot) is also trivially a strongly symmetric public

perfect equilibrium. Consider now the play in the remaining low-revenue separating
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(LRS), abstention (Abstain), and high-reserve-price (HRP) states.

Incentive compatibility of the buyers. Observe first that the buyers’ play in (HRP)

is trivially incentive compatible: since the seller sets rhrp = θ regardless of what the

buyers do, there cannot be a profitable deviation for the buyers in (HRP) (deviat-

ing downwards is impossible, deviating upwards can only lead to negative payoffs).

Consider therefore the incentives of the buyers in the low-revenue-separating (LRS)

state. Let us start with on-schedule incentive compatibility in (LRS). In (LRS), a

low-type buyer obtains a reward of qn−1

n
θ. If a low-type buyer attempted to mimic a

high-type buyer, then he would get

1− qn

n(1− q)
(θ − blrs) =

1− qn

n(1− q)

(
θ − 1− qn−1

1− qn
θ

)
=

qn−1

n
θ

as well, and hence would not have a strict incentive to do so. In (LRS), a high-type

buyer gets a reward of

1− qn

n(1− q)
(θ − blrs) =

1− qn

n(1− q)

(
θ − 1− qn−1

1− qn
θ

)
=

1− qn−1

n(1− q)
(θ − θ) +

qn−1

n
θ >

qn−1

n
θ,

which is what he would get by mimicking a low-type buyer.

Consider now the off-schedule incentive compatibility conditions in (LRS). The

ex ante payoff of each buyer in (LRS) is given by:

vlrs =
1

n

[
(1− qn)

(
θ − 1− qn−1

1− qn
θ

)
+ qnθ

]
=

1

n

[
(1− qn)(θ − θ) + qn−1θ

]
Recall that in the one-shot equilibrium of the Low-reserve-price region, the ex ante

equilibrium payoff for each bidder is given by v∗os = (1− q)qn−1(θ − θ)5.

The off-schedule incentive compatibility conditions will require that the following

hold in (LRS) for a high-type buyer:

(1− δ)
1− qn

n(1− q)
(θ − blrs) + δvlrs ≥ (1− δ)max{qn−1θ, θ − blrs}+ δv∗os.

The off-schedule incentive compatibility conditions will also require that the following

hold in (LRS) for a low-type buyer:

(1− δ)
qn−1

n
θ + δvlrs ≥ (1− δ)max{qn−1θ, θ − blrs}+ δv∗os.

5Note that vlrs exceeds v∗os for all parameter values. Indeed, vlrs − v∗os = 1
n

[
(1 − qn)(θ − θ) +

qn−1θ
]
− (1− q)qn−1(θ − θ) = 1

n

[
(1− qn − n(1− q)qn−1)(θ − θ) + qn−1θ

]
> 1

nq
n−1θ > 0.
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Before dealing with the above two conditions, consider the incentive compatibility

conditions of the buyers in (Abstain). The incentive compatibility condition of

a high-type buyer in (Abstain) is given by δvlrs ≥ (1 − δ)(θ − r′) + δv∗os. The

incentive compatibility condition of a low-type buyer in (Abstain) is given by δvlrs ≥

(1− δ)(θ− r′)+ δv∗os. The best deviation in (Abstain) obtains for a high-type buyer

when r′ ≈ 0. This deviation is unprofitable whenever

δ
1

n

[
(1− qn)(θ − θ) + qn−1θ

]︸ ︷︷ ︸
=vlrs

≥ (1− δ)θ + δ (1− q)qn−1(θ − θ)︸ ︷︷ ︸
=v∗os

. (1)

Notice that the incentive compatibility condition in (1) implies all of the off-

schedule incentive compatibility conditions in both (Abstain) and (LRS). The in-

centive compatibility condition in (1) is satisfied for all the values of the buyers’

discount factor δ such that:

δ >
nθ

nθ +
(
1− qn − n(1− q)qn−1

)
(θ − θ) + qn−1θ

≡ δ∗lrs,

which is precisely the condition on δ required by Proposition 1 in Case (ii).

Incentive compatibility of the seller. Consider first the incentives of the seller in

the low-revenue separating state (LRS). The revenue of the seller in (LRS) is:

Rlrs = (1− qn)
1− qn−1

1− qn
θ + qn0 = (1− qn−1)θ.

It is clear that the seller does not want to deviate: if she attempts a deviation to

r′ > 0, her revenue will become (1− δ0)0+ δ0(1− qn−1)θ = δ0(1− qn−1)θ (because all

the buyers will abstain following r′ > 0), which cannot exceed Rlrs for any δ0.

Consider now the incentives of the seller in the high-reserve-price state (HRP).

Her revenue in (HRP) is equal to Rhrp = (1 − qn)θ. If she deviates to any r′ ̸= θ,

then her revenue is (1− δ0)0 + δ0(1− qn−1)θ = δ0(1− qn−1)θ < (1− qn)θ = Rhrp.

Case (iii). As before, the play in (One-shot) is trivially a strongly symmetric

public perfect equilibrium. It remains to consider the play in the zero-revenue pooling

(ZRP), abstention (Abstain), and high-reserve-price (HRP) states.

Incentive compatibility of the buyers. As in Case (ii), the buyers’ play in (HRP)

is trivially incentive compatible since the seller sets rhrp = θ no matter what they

do. Consider therefore the buyers’ play in the zero-revenue pooling state (ZRP). A
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buyer’s ex ante payoff in (ZRP) is equal to:

vzrp =
1

n

[
(1− q)θ + qθ

]
.

The best deviation available at (ZRP) is for a high-type buyer to bid 0 + ϵ for

some small ϵ. The associated incentive compatibility condition is:

(1− δ)
1

n
θ + δvzrp ≥ (1− δ)θ + δv∗os. (2)

Consider now the buyers’ play in (Abstain). The best deviation available at

(Abstain) is for the a high-type buyer to bid r′ and obtain the payoff of θ− r′. The

associated incentive compatibility condition is given by δvzrp ≥ (1− δ)(θ− r′) + δv∗os.

Clearly this deviation is most profitable when r′ ≈ 0, therefore we could rule out all

such deviations if we made sure that the following condition holds:

δ
1

n

[
(1− q)θ + qθ

]︸ ︷︷ ︸
=vzrp

≥ (1− δ)θ + δ (1− q)qn−1(θ − θ)︸ ︷︷ ︸
=v∗os

. (3)

Observe that the incentive compatibility condition in (3) also implies the incentive

compatibility condition at (ZRP) derived in (2), and thus the buyers’ play in Case

(iii) is off-path incentive compatible as long as (3) is satisfied. It is satisfied whenever

δ >
nθ

nθ + qθ + (1− q)θ − n(1− q)qn−1(θ − θ)
≡ δ∗zrp. (4)

Note that the critical value of the buyers’ discount factor δ∗zrp defined in (4) is in (0, 1)

as long as qθ+(1− q)θ−n(1− q)qn−1(θ−θ) = n(vzrp−v∗os) is strictly positive. Recall

that the low-revenue-separating payoff vlrs from Case (ii) always exceeds the one-shot

equilibrium payoff v∗os in the Low-reserve-price region. Recall also that in Case (iii)

we have q < θ

θ−θ
, hence vzrp > vlrs > v∗os

6, which shows that δ∗zrp ∈ (0, 1) in Case (iii).

Incentive compatibility of the seller. Consider first the seller’s incentives in (ZRP).

The seller does not have any incentive to deviate because she would end up with zero

regardless of the reserve price, which makes setting rzrp = 0 one of her optimal choices.

Consider now the seller’s incentives in the high-reserve-price state (HRP). Just

as in Case (ii), the seller’s revenue is equal to R∗
hrp = (1 − qn)θ. She does not want

to deviate since a deviation would lead to zero revenue forever.

6Indeed, comparing vzrp and vlrs, we get vlrs−vzrp = 1
n

[
(1−qn)(θ−θ)+qn−1θ

]
−(1−q) 1nθ−q 1

nθ =

1−qn−1

n

[
qθ − (1 + q)θ

]
, which means that vlrs < vzrp whenever q < θ

θ−θ
.
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5.3 Summary of Section 5

Lemma 1 and Lemma 2 together imply that the players’ high-revenue strategy

profiles corresponding to
(
b
∗
, b∗

)
are strongly symmetric public perfect equilibria in all

three cases (i), (ii), and (iii) of Definition 8. In the remainder of the paper, we will refer

to them as high-revenue equilbiria corresponding to
(
b
∗
, b∗

)
. Lemma 1 and Lemma 2

also in particular imply that the players’ continuation strategy profiles in the (LRS),

(ZRP), and (HRP) states are strongly symmetric public perfect equilibria as well. In

the remainder of the paper, we will refer to these continuation profiles as low-revenue

separating, zero-revenue pooling, and high-reserve-price equilibria respectively.

6 Collusiveness

6.1 Collusiveness on path

Lemma 3 (Collusiveness on path). If the conditions of Proposition 1 are satisfied,

then the high-revenue equilibria corresponding to
(
b
∗
, b∗

)
are collusive on path in all

three cases (i), (ii), (iii) of Definition 8.

Proof. Let us consider the buyer-games induced by the seller’s equilibrium strategies.

Note that these buyer-games are exactly the same stochastic game (up to parameter

values) in all three cases (i), (ii), (iii) of Definition 8. This stochastic game has

two states. It starts in the low-reserve-price state ωl, in which the reserve price is

r(ωl) = b∗, and remains in that state unless a bid outside of
{
b∗, b

∗}
is placed by at

least one buyer, in which case the game transitions to the high-reserve-price state ωh,

in which the reserve price is r(ωh) = θ. The high-reserve-price state ωh is absorbing,

i.e. once the high reserve-price-state is achieved, the game remains in that state

forever. The full formal definition is as follows:

Definition 9 (High-revenue buyer-game).

• The set of actions for each buyer is A, i.e. as in the repeated auction game.

• The set of states is Ω = {ωl, ωh}, the initial state is ω0 = ωl.

• The transitions between states occur according to τ :

τ(ωl, b) =

ωl, if b ∈
{
b∗, b

∗}n

ωh, otherwise

; τ(ωh, b) = ωh ∀b.
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• The set of valuations is Θ, i.e. as in the repeated auction game.

• The utility of buyer i with type θi bidding bi in state ω is

ũi(ω, b, θi) =


1

#(win)
(θi − bi), if bi ≥ r(ω) &

(
bi = max{b1, ..., bn} or b−i = ∅

)
0, otherwise

,

where #(win) is the number of winners in the auction, r(ωl) = b∗, r(ωh) = θ.

The definition of collusiveness on path (Definition 5) requires that the buyers be

unable to play a strongly symmetric public perfect equilibrium in the high-revenue

buyer-game of Definition 9 that would improve their payoff. I first show that the

buyers’ strategy in any strongly symmetric public perfect equilibrium of this buyer-

game must be monotonic:

Lemma 4 (Monotonicity). Consider the high-revenue buyer-game in Definition

9. Any strongly symmetric public perfect equilibrium of this buyer-game satisfies

monotonicity: pick any history of play that leads to state ωl, if b is the equilibrium

bidding action of a high-type buyer and b is the equilibrium bidding action of a low-type

buyer after that history, then either b ≥ b, or b ̸= ∅ and b = ∅, or b = b = ∅.

Proof. See Appendix A.

The ex ante payoff from bidding (b, b) in state ωl is given by:

ûωl(b, b) ≡


1
n

[
(1− qn)(θ − b) + qn(θ − b)

]
if b > b,

1
n

[
(1− q)(θ − b) + q(θ − b)

]
if b = b,

where whenever b = ∅ or b = ∅, the convention is to set the ex post payoff to zero.

When the current state is ωh, the reserve price is equal to θ, and thus the buyers

cannot get more than zero in any continuation equilibrium. Since they cannot get

a negative payoff in any continuation equilibrium either, they must be getting zero

once the game is in state ωh, we thus set ûωh(b, b) ≡ 0 without loss of generality.

Consider now the relaxed optimal collusion problem in the high-revenue buyer-

game, which ignores all the aspects of incentive compatibility except monotonicity.
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It is given by:

sup
{bt,bt}

+∞
t=0

(1− δ)E
+∞∑
t=0

δtûω(bt, bt) subject to

bt ≥ bt ∀t; transition function τ as in Definition 9.

This optimization problem gives us an upper bound on strongly symmetric public

perfect equilibrium payoffs in the high-revenue buyer-game of Definition 9. It follows

from Blackwell (1965) that it is without loss of generality to restrict attention to

stationary solution candidates. I therefore consider two kinds of stationary monotonic

bidding profiles: separating and pooling.

Separating profiles. If both types bid on schedule, then clearly there is only one

option: b = b∗ and b = b
∗
with the payoff equal to v∗fse. If all buyers of type θ bid on

schedule and all buyers of type θ bid off schedule, then the off-schedule action of any

low-type buyer will be immediately punished with zero continuation values. Since

the punishment will not occur if and only if all the buyers have high types (i.e. with

probability (1− q)n), the resulting ex ante payoff will be:

v(b, b) = (1− δ)
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ δ(1− q)nv(b, b).

Recall that we assume b∗ > θ, hence by incentive compatibility we must have b
∗
< θ.

Then the optimal solution here is to coordinate on the bidding profile in which any

high-type buyer bids the low equilibrium bid b∗ and any low-type buyer abstains,

with the payoff of

v(b∗, ∅) =
(1− δ)

[
(1− qn)(θ − b∗)

]
n(1− δ(1− q)n)

.

The collusiveness constraint (Col-sep-1) of the revenue maximization problem RM

evaluated at (b
∗
, b∗, v∗fse) gives us v

∗
fse ≥ v(b∗, ∅).

If all buyers of type θ bid off schedule and all buyers of type θ bid on schedule, then

the off-schedule action of any high-type buyer will be punished with zero continuation

values. Since the punishment will not occur if and only if all the buyers have low

types (i.e. with probability qn), the resulting payoff will be:

v(b, b) = (1− δ)
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ δqnv(b, b).
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The upper bound on payoffs in this case is achieved by the low types bidding b∗ and

the high types bidding b∗ + ϵ for a small ϵ, with a resulting payoff of not more than:

sup
ϵ>0

v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]
n(1− δqn)

.

The collusiveness constraint (Col-sep-2) of the revenue maximization problem RM

evaluated at (b
∗
, b∗, v∗fse) gives us v

∗
fse ≥ supϵ>0 v(b

∗ + ϵ, b∗).

If buyers of both types bid off schedule, then they will be punished with zero

continuation values with probability 1, and the resulting payoff will be:

v(b, b) = (1− δ)
1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ δ0.

Since b
∗
< θ, the upper bound in this case is achieved by the high types bidding b∗+ ϵ

for a small ϵ, and the low types abstaining, which results in a payoff not more than:

sup
ϵ>0

v(b∗ + ϵ, ∅) = (1− δ)
1

n
(1− qn)(θ − b∗),

which is clearly below v(b∗, ∅) and therefore below v∗fse.

Pooling profiles. The buyers might find it optimal to pool instead of separating.

If the buyers pool on schedule, then their collusive scheme is never detected. Clearly

the optimal pooling on schedule is achieved at b∗ with the resulting payoff of

v(b∗, b∗) =
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
. (5)

The collusiveness constraint (Col-pool) of the revenue maximization problem RM

evaluated at (b
∗
, b∗, v∗fse) gives us v

∗
fse ≥ v(b∗, b∗).

The payoff from pooling off-schedule cannot exceed v∗fse. If the buyers coordinate on

any off-schedule bid above b∗, they will get a fraction of the payoff in (5). Abstaining

also cannot be optimal as long as v∗fse > 0, which it is by incentive compatibility.

We therefore conclude that no strongly symmetric public perfect equilibrium pay-

off in the high-revenue buyer-game corresponding to (b
∗
, b∗) can exceed v∗fse, and there-

fore the high-revenue equilibrium corresponding to (b
∗
, b∗) is collusive on path.

6.2 Collusiveness off path

Lemma 5 (Collusiveness off path). If the conditions of Proposition 1 are satisfied,

then the high-revenue equilibria corresponding to
(
b
∗
, b∗

)
are collusive off path in all

three cases (i), (ii), (iii) of Definition 8.
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Proof. We consider the three cases of Definition 8.

Case (i). According to the definition of collusiveness off path (Definition 6), we

need to check that the inifinite repetition of the one-shot equilibrium of the High-

reserve-price region is collusive on path. Recall from Remark 1 that this is indeed the

case for any values of the discount factors δ0 and δ.

Cases (ii) and (iii). According to the definition of collusiveness off path (Def-

inition 6), we need to check that the low-revenue separating equilibrium, the zero-

revenue pooling equilibrium, and the high-reserve-price equilibria of Cases (ii) and

(iii) are collusive on path. Observe first that the argument of Remark 1 immediately

extends to the two high-reserve-price equilibria, so they are clearly collusive on path.

Observe also that both the low-revenue separating equilibrium of Case (ii) and the

zero-revenue pooling equilibrium of Case (iii) lead to the same buyer-game. This

buyer game is a repeated first-price auction game, in which the reserve price is set to

zero. The following is its formal definition:

Definition 10 (Low-revenue buyer-game).

• The set of actions for each buyer is A, i.e. as in the repeated auction game.

• The set of states is Ω = {ω0}, transitions are trivial: τ(ω0, b) = ω0 for all b.

• The set of valuations is Θ, i.e. is as in the repeated auction game.

• The utility of buyer i with type θi bidding bi in state ω is

ũi(ω, b, θi) =


1

#(win)
(θi − bi), if bi = max{b1, ..., bn} or b−i = ∅

0, otherwise

,

where #(win) is the number of winners in the auction.

The following lemma applies:

Lemma 6 (On-path collusiveness of low-revenue equilibria). Consider the low-

revenue buyer-game in Definition 10. In Case (ii), the maximal strongly symmetric

public perfect equilibrium payoff achievable by the buyers is equal to their low-revenue

separating equilbrium payoff. In Case (iii), the maximal strongly symmetric public

perfect equilibrium payoff achievable by the buyers is equal to their zero-revenue pooling

payoff. Hence the low-revenue separating and the zero-revenue pooling equilbria are

collusive on path in their respective cases.
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The proof of Lemma 6 is relegated to Appendix B. The main idea is to show

(by relaxing some of the incentive compatibility constraints) that if the buyers find

it optimal to separate (or, respectively, pool) in the first period, then they will find it

optimal to separate (or, respectively, pool) in every period along the equilibrium path.

The optimal pooling is then trivially at zero, and the optimal separation is pinned

down by the on-schedule incentive compatibility constraint of a low-type buyer.

7 Revenue maximization and full surplus extraction

Let us now turn our attention to Proposition 2. To prove Proposition 2, we are

going to solve the revenue maximization problem RM and verify that its solutions

indeed define collusive public perfect equilibria that allow the seller to extract full

surplus from the buyers in the limit. To solve RM, we will distinguish three more

cases depending on which of the RM’s constraints are binding at the optimum. To

avoid confusion with the three cases of Definition 8, we will use Arabic numerals

to label the solutions of RM. The parameter regions corresponding to each case

are illustrated by Figure 3. The Supplementary Material contains additional results

characterizing the three parameter regions.

In Case 1, the (Col-sep-1) and (LowIC) constraints are binding. Case 1 does not

always apply because its solution candidate does not always satisfy the (HighIC-up)

incentive compatibility constraint: if n is high enough, the winning probability of a

high-type buyer is so low that such a buyer would prefer to win with probability 1 by

placing a slightly higher bid and suffer the punishment of zero continuation value. We

therefore have to consider Case 2, in which (HighIC-up) and (Col-sep-1) are binding,

and the remaining constraints are slack. Case 2’s equilibrium candidate does not

apply for high values of q: in this case the (HighIC-down) incentive compatibility

constraint will be violated. Intuitively, if the mass of low types is sufficiently large,

then a high-type buyer will have a fairly high chance of winning by bidding just above

the low-type equilibrium bid even though placing such a bid is severely punished. In

Case 3, the (HighIC-up) and (HighIC-down) constraints are binding.

The remaining constraints in the revenue maximization problem are non-binding

in all three cases. To develop some intuition, consider first the on-schedule incentive
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Figure 3: Parameter regions corresponding to Cases 1, 2, and 3. For each number of

buyers n, the respective line shows which values of q belong to Cases 1, 2, and 3.

compatibility constraint of a high-type buyer (HighIC-on-sch). This constraint essen-

tially puts an upper bound on the high-type equilibrium bid (if a high-type buyer is

asked to bid a lot more than a low-type buyer, he might find it profitable to deviate

to the low-type bid and get a much higher reward with a smaller winning probabil-

ity), but we have already included a constraint that does the same, the collusiveness

constraint (Col-sep-1). Indeed, if a high-type buyer is asked to place a very high bid

in every period, then the buyers might find it profitable to collude on a lower bidding

profile, and such a collusion scheme is prevented by (Col-sep-1). The restriction on

equilibrium bids imposed by (Col-sep-1) is more severe than the one imposed by the

on-schedule incentive compatibility of a high type buyer. Clearly, if the more severe

restriction had been the one imposed by incentive compatibility, we would have been

unlikely to consider collusion an important problem in the first place.

The two remaining collusiveness constraints, (Col-sep-2) and (Col-pool), are also

non-binding in all three cases, which means that the optimal collusion scheme for the

buyers always involves bidding b∗ for the high types and abstaining for the low types.

Collusion by pooling on schedule turns out to be particularly inefficient as it leads to

negative payoffs for the buyers for δ’s close to 1. Collusion by leaving the low types
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on schedule and moving the high types off schedule does not outperform the optimal

collusion scheme because it leads to punishments for the high types, who, unlike the

low types, get a positive payoff in every period, thus the gain from bidding lower

made by the high types is completely offset by the severity of the punishment.

In the remainder of this section, I will solve the revenue maximization problem

RM using a relaxed-problem approach. I will construct three relaxed revenue maxi-

mization problems and show that each of them has a solution that satisfies θ < b∗ < b
∗

for sufficiently high values of δ. I will then show that each of the three solutions is

also a solution to RM by checking the remaining constraints. In all three cases the

seller will be able to extract full surplus from the buyers in the limit as the buyers’

discount factor δ goes to 1.

Case 1: High expected valuation/Small number of buyers

q <
1− qn

n(1− q)

In Case 1, we consider the following relaxed maximization problem:

RM-1 : max
b,b,v

(1− qn)b+ qnb, s.t.

(Eq-payoff), (LowIC), (Col-sep-1);

and first establish the following lemma:

Lemma 7. There exists a critical discount factor δ∗ such that for all δ ∈ (δ∗, 1) RM-1

has an optimum, at which (LowIC) and (Col-sep-1) are binding. The optimum is7:

b∗ = θ +
δq
(
1− qn

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) , (6)

b
∗
= θ − qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) , (7)

v∗fse =
1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) . (8)

Proof. See Appendix C.1.

7The equilibrium conditions are thus given by a system of linear equations, whose solution is

straightforward. Interested readers will find the full derivation in the Supplementary Material.
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We then show that the bids in (6) and (7) satisfy the conditions of Proposition 1:

Lemma 8. θ < b∗ < b
∗
.

Proof. θ < b∗ is equivalent to θ − b∗ < 0, which is true since −δq(1− qn)(θ − θ) < 0.

b∗ < b
∗
is equivalent to θ − b∗ > θ − b

∗
. Observe that

θ − b∗ =
qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,
hence θ − b∗ > θ − b

∗
is equivalent to 1− δ(1− q)n > 1− δ(1− q), which is true for

any δ ∈ (0, 1) and q ∈ (0, 1) since n ≥ 2.

And finally, we show that the solution to RM-1 is also a solution to the revenue

maximization problem RM for sufficiently high values of the buyers’ discount factor:

Lemma 9. Suppose that q < 1−qn

n(1−q)
. Suppose further that b∗, b

∗
, and v∗fse are as

defined in (6), (7), and (8) respectively, then there exists a critical buyers’ discount

factor δ∗, such that for all δ ∈ (δ∗, 1) and for all δ0 ∈ (0, 1) the tuple
(
b
∗
, b∗, v∗fse

)
solves

RM, implying in turn that the high-revenue strategy profile corresponding to (b
∗
, b∗)

is a collusive public perfect equilibrium of the repeated auction game. Moreover, the

seller achieves full surplus extraction in the limit as δ goes to 1.

Proof sketch. The complete proof is provided in Appendix E.1. Here I briefly sketch

the most important points. To show full surplus extraction, recall that the seller’s

revenue is equal to the full surplus net of the equilibrium payoff of the buyers:

R∗
fse(δ) = (1− qn)θ + qnθ − nv∗fse. It is easy to see from (8) that nv∗fse −−→

δ→1
0.

To show that the high-revenue strategy profile corresponding to
(
b
∗
, b∗

)
is a collu-

sive public perfect equilibrium, recall that by Proposition 1 and Lemma 8, it is enough

to check that R∗
fse(δ) ≥ (1− qn)θ, and that the remaining constraints in the revenue

maximization problem RM are satisfied at (b
∗
, b∗, v∗fse) for high enough δ. R∗

fse(δ)

clearly exceeds (1− qn)θ for high enough values of δ due to full surplus extraction in

the limit, and the remaining constraints are checked by direct calculation.

All of the remaining constraints in RM are non-binding at (b
∗
, b∗, v∗fse) for all δ

high enough and all values of q and n, except the incentive constraint (HighIC-up).

There is a region of q and n, where this constraint cannot be satisfied even for δ close
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to 1. To see why, observe that (HighIC-up) can be rewritten as:

δv∗fse ≥ (1− δ)

(
1− 1− qn

n(1− q)

)
(θ − b

∗
)

Plugging the respective expressions from (7) and (8) into the above inequality, we

obtain:

δ ≥ 1

1− q
− 1− qn

n(1− q)2
. (9)

The condition on δ identified in (9) can only be satisfied if the right-hand side of (9)

is strictly below 1, which is only true when q < 1−qn

n(1−q)
, hence the parameter region of

Case 1. For the rest of the constraints, see Appendix E.1.

Case 2: Medium expected valuation8

1− qn

n(1− q)
≤ q < 1−

qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
1− qn

In Case 2, we consider the following relaxed maximization problem:

RM-2 : max
b,b,v

(1− qn)b+ qnb, s.t.

(Eq-payoff), (HighIC-up), (Col-sep-1);

and first establish the following lemma:

Lemma 10. There exists a critical discount factor δ∗ such that for all δ ∈ (δ∗, 1)

RM-2 has an optimum, at which (HighIC-up) and (Col-sep-1) are binding. The

optimum is9:

b∗ = θ +
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ), (10)

b
∗
= θ − 1

D(δ)
δqn(1− qn)(1− q)(θ − θ), (11)

v∗fse =
1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ), (12)

where

D(δ) ≡ qn
(
1−δ(1−q)n

)[
n(1−q)−(1−qn)

]
+(1−qn)

[
(1−qn)(1−δq)−n(1−δ)(1−q)

]
.

8To see that the parameter region is well-defined, notice that nqn−1 <
∑n−1

k=0 q
k = 1−qn

1−q

implies that qn−1
(
1 − (1 − q)n

)
< 1−qn

n(1−q) , which is in turn equivalent to 1−qn

n(1−q) < 1 −
qn−1

(
1−(1−q)n

)[
n(1−q)−(1−qn)

]
1−qn .

9The equilibrium conditions are thus given by a system of linear equations, whose solution is

straightforward. Interested readers will find the full derivation in the Supplementary Material.
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Proof. See Appendix C.2.

We then show that the bids in (10) and (11) satisfy the conditions of Proposition

1 for sufficiently high δ:

Lemma 11. Suppose q ≥ 1−qn

n(1−q)
, and δ is sufficiently close to 1, then θ < b∗ < b

∗
.

Proof. To see that θ < b∗ for sufficiently high δ, observe that

θ − b∗ −−→
δ→1

− 1

D(1)
(1− qn)(1− q)(1− qn)(θ − θ) < 0.

The proof of b∗ < b
∗
is provided in Appendix D.

And finally, we show that the solution to RM-2 is also a solution to the revenue

maximization problem RM for sufficiently high values of the buyers’ discount factor:

Lemma 12. Suppose that 1−qn

n(1−q)
≤ q < 1− qn−1(1−(1−q)n)[n(1−q)−(1−qn)]

1−qn
. Suppose further

that b∗, b
∗
, and v∗fse are as defined in (10), (11), and (12) respectively, then there exists

a critical buyers’ discount factor δ∗, such that for all δ ∈ (δ∗, 1) and for all δ0 ∈ (0, 1)

the tuple
(
b
∗
, b∗, v∗fse

)
solves RM, implying in turn that the high-revenue strategy

profile corresponding to (b
∗
, b∗) is a collusive public perfect equilibrium of the repeated

auction game. Moreover, the seller achieves full surplus extraction in the limit as δ

goes to 1.

Proof sketch. The complete proof is provided in Appendix E.2. As in the previous

case, I only provide a sketch of the most important points in the main text. The

argument for full surplus extraction is exactly the same as in Lemma 9: from (12) we

have nv∗fse −−→
δ→1

0, implying R∗
fse(δ) −−→

δ→1
(1− qn)θ+ qnθ. As in the previous case, full

surplus extraction in the limit implies that R∗
fse(δ) ≥ (1 − qn)θ for all high enough

values of δ, hence Proposition 1 and Lemma 11 imply that the high-revenue strategy

profile corresponding to
(
b
∗
, b∗

)
is a collusive public perfect equilibrium as long as

the remaining constraints in RM are satisfied at (b
∗
, b∗, v∗fse) for high enough δ. The

remaining constraints are checked by direct calculation.

Let us first check that (LowIC) is satisfied under the parameter restriction of Case

2. Recall that a low-type buyer must be willing to participate in the bidding with

the bid b∗ as opposed to abstaining and getting a zero payoff:

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse ≥ 0.
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Plugging the respective expressions from (10) and (12) into the above inequality, we

obtain:

δ ≤ 1

1− q
− 1− qn

n(1− q)2
,

which is true since 1
1−q

− 1−qn

n(1−q)2
≥ 1 by assumption that q ≥ 1−qn

n(1−q)
.

The remaining constraints ofRM are all non-binding at (b
∗
, b∗, v∗fse) for high values

of δ and all values of q and n, except for the constraint associated with a downward

deviation of a high-type buyer (HighIC-down). Recall that a high-type buyer could

deviate to b∗ + ϵ and win whenever all of his competitors are low types. For this

deviation to be unprofitable, his payoff must satisfy:

(1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse ≥ (1− δ)qn−1(θ − b∗).

Plugging expressions (10), (11), and (12) into the above inequality, we obtain:

δ(1− qn)(1− q) ≥ qn−1
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
,

which is satisfied for δ high enough as long as:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
,

which is true since q < 1− qn−1(1−(1−q)n)[n(1−q)−(1−qn)]
1−qn

in Case 2.

The rest of the constraints are checked in Appendix E.2.

Case 3: Low expected valuation

q ≥ 1−
qn−1

(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
1− qn

In Case 3 we consider the following relaxed maximization problem:

RM-3 : max
b,b,v

(1− qn)b+ qnb, s.t.

(Eq-payoff), (HighIC-up), (HighIC-down);

and first establish the following lemma:

Lemma 13. There exists a critical discount factor δ∗ such that for all δ ∈ (δ∗, 1)

RM-3 has an optimum, at which (HighIC-up) and (HighIC-down) are binding. The
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optimum is10:

b∗ = θ +
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(θ − θ), (13)

b
∗
= θ − 1

D(δ)
δqn(1− q)(θ − θ), (14)

v∗fse =
1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ), (15)

where

D(δ) ≡ (1− qn)(1− δq) + δq(1− q)− n(1− δ)(1− q).

Proof. See Appendix C.3.

As in the previous two cases, we then show that the bids in (13) and (14) satisfy

the conditions of Proposition 1 for sufficiently high δ:

Lemma 14. Suppose δ is sufficiently close to 1, then θ < b∗ < b
∗
.

Proof. To see that θ < b∗ for sufficiently high values of δ, observe that:

θ − b∗ −−→
δ→1

− 1

D(1)
(1− qn)(1− q)(θ − θ) < 0.

b∗ < b
∗
is equivalent to θ− b∗ > θ− b

∗
. Observe that θ− b∗ = 1

D(δ)
δq(1− q)(θ− θ),

hence θ − b∗ > θ − b
∗
is equivalent to:

1

D(δ)
δq(1− q)(θ − θ) >

1

D(δ)
δqn(1− q)(θ − θ),

which is clearly true since D(δ) > 0 for high δ, and q > qn for all n ≥ 2 and

q ∈ (0, 1).

And finally, we show that the solution to RM-3 is also a solution to the revenue

maximization problem RM for sufficiently high values of the buyers’ discount factor:

Lemma 15. Suppose that q ≥ 1 − qn−1(1−(1−q)n)[n(1−q)−(1−qn)]
1−qn

. Suppose further that

b∗, b
∗
, and v∗fse are as defined in (13), (14), and (15) respectively, then there exists a

critical buyers’ discount factor δ∗, such that for all δ ∈ (δ∗, 1) and for all δ0 ∈ (0, 1) the

tuple
(
b
∗
, b∗, v∗fse

)
solves RM, implying in turn that the high-revenue strategy profile

corresponding to (b
∗
, b∗) is a collusive public perfect equilibrium of the repeated auction

game. Moreover, the seller achieves full surplus extraction in the limit as δ goes to 1.
10The equilibrium conditions are thus given by a system of linear equations, whose solution is

straightforward. Interested readers will find the full derivation in the Supplementary Material.
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Proof sketch. The complete proof is provided in Appendix E.3. As in the previous

two cases, I only provide a sketch of the most important points in the main text. The

argument for full surplus extraction is again the same: from (15) we have nv∗fse −−→
δ→1

0,

implying R∗
fse(δ) −−→

δ→1
(1− qn)θ + qnθ. As in the previous two cases, full surplus ex-

traction in the limit implies that R∗
fse(δ) ≥ (1− qn)θ for all high enough values of δ,

hence Proposition 1 and Lemma 14 imply that the high-revenue strategy profile corre-

sponding to
(
b
∗
, b∗

)
is a collusive public perfect equilibrium as long as the remaining

constraints in RM are satisfied at (b
∗
, b∗, v∗fse) for high enough δ. The remaining

constraints are checked by direct calculation.

The off-schedule incentive compatibility constraints (HighIC-up) and (HighIC-

down) are satisfied by construction. Let us check that the low-type incentive com-

patibility constraint (LowIC) is satisfied. (LowIC), evaluated at (b
∗
, b∗, v∗fse), is:

(1− δ)
qn−1

n
(θ − b∗) + δv∗fse ≥ 0.

Plugging the expressions from (13) and (15) into the above inequality, we obtain:

δ ≤ 1

1− q
− 1− qn

n(1− q)2
,

which can be satisfied since 1
1−q

− 1−qn

n(1−q)2
≥ 1 is implied by q ≥ 1− qn−1(1−(1−q)n)[n(1−q)−(1−qn)]

1−qn
>

1−qn

n(1−q)
, where the first inequality is true in Case 3 by assumption

The remaining constraints of RM are all non-binding at (b
∗
, b∗, v∗fse) for high

values of δ and all values of q and n, except for the collusiveness constraint (Col-sep-

1). Recall that (Col-sep-1) evaluated at (b
∗
, b∗, v∗fse) is given by:

v∗fse ≥
(1− δ)(1− qn)(θ − b∗)

n
(
1− δ(1− q)n

) =
(1− δ)(1− qn)δq(1− q)(θ − θ)

nD(δ)
(
1− δ(1− q)n

) .

Plugging the value of v∗fse from (15) into the above expression, I obtain:(
1− δ(1− q)n

)
qn−1

[
n(1− q)− (1− qn)

]
≥ δ(1− qn)(1− q),

which can be satisfied for any δ ∈ (0, 1) as long as q and n satisfy

q ≥ 1−
qn−1

(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
1− qn

,

which is true in Case 3 by assumption.

The rest of the constraints are checked in Appendix E.3.
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8 Revenue-maximizing reserve prices

The reserve prices along the equilibrium path of the full-surplus-extracting collu-

sive public perfect equilibria (in the limit as δ goes to 1) are given by:

r∗ =


θ + q(1−qn)(θ−θ)

q(1−qn)+qn(1−(1−q)n)
in Case 1

θ + (1−qn)2(1−q)(θ−θ)
qn(1−(1−q)n)[n(1−q)−(1−qn)]+(1−qn)2(1−q)

in Case 2

θ + (1−qn)(θ−θ)
1−qn+q

in Case 3

They are illustrated by Figure 4. The reserve prices are decreasing in q, going to θ

as q goes to 0 and going to θ as q goes to 1. Indeed, since q is the probability of

the low type, when q is close to 0, the buyers all have high valuations with a very

high probability, and when q is close to 1, the buyers all have low valuations with a

very high probability. Recall that the optimal reserve prices in the one-shot auction

problem are also decreasing in q, but the optimal decision is essentially a cutoff rule

(for fixed values of other parameters): for relatively low values of q the optimal reserve

price is θ, while for relatively high values of q it is θ. Thus, even though the direction

of dependence is the same, the functional form of this dependence is much less trivial

in the repeated auction setting with collusion.

Similarly, the optimal reserve prices in the one-shot auction problem are increasing

in the number of buyers, but the dependence takes the form of a cutoff rule (again,

when the other parameter values are fixed), where the optimal reserve price is equal

to θ when the number of buyers is relatively low, and is equal to θ when it is relatively

high. In contrast to the one-shot setting, the reserve prices in the repeated auction

setting with collusion depend on n in a much less trivial way.
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Figure 4: Limiting reserve prices for all q ∈ (0, 1), and for each n ∈ {2, ..., 10} moving

from the southwest to the northeast as n grows. Valuations are θ = 1 and θ = 2. In

the dark-blue, red, and light-blue segments, Cases 1, 2, and 3 apply respectively.

This non-trivial dependence of the reserve prices on q and n can to a certain ex-

tent be explained by their very different role in the repeated setting with collusion.

In the one-shot auction problem, the role of the reserve prices is to exclude certain

valuation types from participation with the purpose of increasing competition among

the remaining types. In the repeated setting with colluding buyers, the full-surplus-

extracting collusive public perfect equilibria are efficient and the reserve prices play

two crucial roles. First, in the off-path component of the seller’s strategy, the reserve

prices are chosen to punish the buyers for deviating from the equilibrium path bid-

ding. Second, and more importantly, the on-path component of the reserve prices

makes sure that the buyers pay “upfront” for the continuation of favorable terms of

trade and at the same time do not have an incentive to collude on a lower bidding

profile, resolving the fundamental conflict between revenue-maximization and fighting

collusion.
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9 Concluding remarks

In my paper, I have considered a repeated first-price auction model with a non-

committed seller who dynamically adjusts reserve prices to fight collusion among

buyers. To model the interaction between the seller and the colluding buyers, I have

proposed the solution concept of collusive public perfect equilibrium. A collusive public

perfect equilibrium is a public perfect equilibrium that additionally requires that the

buyers be unable to improve their equilibrium payoff in the “buyer-game” induced by

the seller’s equilibrium strategy. Studying the outcomes as the buyers’ discount factor

goes to 1, I find collusive public perfect equilibria that allow the seller to extract the

entire surplus from the colluding buyers. This result suggests that the problem of

collusion in repeated auctions is perhaps less severe than is commonly understood:

it turns out that a sufficiently sophisticated seller can come up with rather effective

strategies for fighting collusion, even when she has to publicly disclose all the bids in

the end of every period.

The buyers in my paper have access to symmetric collusive schemes. Such collusive

schemes are particularly simple and thus might require no explicit communication

among the buyers in practice, which makes them virtually impossible to detect for

an antitrust authority. These hard-to-detect collusive schemes must therefore be

addressed as part of the repeated auction design problem itself. My results imply

that it can be done quite successfully. It is however well-known (see e.g. Mailath and

Samuelson (2006)) that more sophisticated asymmetric collusive schemes might allow

the buyers to collude more effectively, especially when they can communicate before

the start of each auction. Even though such asymmetric collusive schemes can often

be dealt with by conventional means of antitrust policy, it is worth studying if they

could also be addressed via more sophisticated auction design.
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A Proof of Lemma 4

Proof. Consider first the high-reserve-price state ωh. Clearly in any public perfect

equilibrium the payoff in this state must be zero, hence we can without loss of gener-

ality assume that bωh(θ) = θ and bωh(θ) = ∅. Consider now the low-reserve-price state

ωl, in which the buyer-game starts. Consider any strongly symmetric public perfect

equilibrium of the buyer-game. Pick any history that leads to ωl and suppose any

high-type buyer bids according to bωl(θ) = b and any low-type buyer bids according

to bωl(θ) = b after that history, and the equilibrium continuation value is given by

v∗
ωl : A

n → R. The equilibrium payoff of a high-type buyer i is given then by:

(1− δ)p(b)(θ − b) + δ E
(
v∗ωl(b, bωl(θ−i))

)
,

where p(b) is the winning probability from bidding b in the current period. Analo-

gously the equilibrium payoff of a low-type buyer i is equal to:

(1− δ)p(b)(θ − b) + δ E
(
v∗ωl(b, bωl(θ−i))

)
,

where p(b) is the winning probability from bidding b in the current period.

Since the above are public perfect equilibrium payoffs, the following incentive

compatibility constraints must be satisfied, for a high type buyer:

(1−δ)p(b)(θ−b)+δ E
(
v∗ωl(b, bωl(θ−i))

)
≥ (1−δ)p(b)(θ−b)+δ E

(
v∗ωl(b, bωl(θ−i))

)
, (16)

and for a low type buyer:

(1−δ)p(b)(θ−b)+δ E
(
v∗ωl(b, bωl(θ−i))

)
≥ (1−δ)p(b)(θ−b)+δ E

(
v∗ωl(b, bωl(θ−i))

)
. (17)

Adding (16) and (17) and canceling the continuation values on both sides, we get:

(1− δ)p(b)(θ − b) + (1− δ)p(b)(θ − b) ≥ (1− δ)p(b)(θ − b) + (1− δ)p(b)(θ − b)

⇔ p(b)(θ − b) + p(b)(θ − b) ≥ p(b)(θ − b) + p(b)(θ − b)

⇔ p(b)θ + p(b)θ ≥ p(b)θ + p(b)θ

⇔
(
p(b)− p(b)

)
(θ − θ) ≥ 0

⇔ p(b)− p(b) ≥ 0,

which establishes the claim.
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B Proof of Lemma 6

Proof. 11 Let V denote the set of strongly symmetric public perfect equilibrium payoffs

of the low-revenue buyer-game in Definition 10 satisfying Assumption 1(b), and let

v̂ = supV . We distinguish two classes of equilibria: those in which a separating

bidding profile is played in the first period, and those in which a pooling bidding

profile is played in the first period. Let Vsep and Vpool be the corresponding sets of

strongly symmetric public perfect equilibrium payoffs. Clearly V = Vsep∪Vpool, hence

v̂ = supVsep or v̂ = supVpool.

Separation in the first period. Suppose v̂ = supVsep and consider a strongly

symmetric public perfect equilibrium in which the buyers separate in the first period.

Let b : Θ → A be the equilibrium action taken in the first period. Denote b and b the

bids placed in the first period by a low-type buyer and a high-type buyer respectively.

Suppose that the equilibrium continuation value after the first period is given by

v∗ : An → R, then the equilibrium payoff of a high-type buyer i is given by:

(1− δ)
1− qn

n(1− q)
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
.

The equilibrium payoff of a low-type buyer i is given by:

(1− δ)
qn−1

n
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
.

The on-schedule incentive compatibility constraint of a low-type buyer is:

(1− δ)
qn−1

n
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
≥ (1− δ)

1− qn

n(1− q)
(θ − b) + δ E

(
v∗(b, b(θ−i))

)
.

Subtract δv̂ and divide both sides by (1− δ):

qn−1

n
(θ−b)+

δ

1− δ
E
(
v∗(b, b(θ−i))− v̂

)
≥ 1− qn

n(1− q)
(θ−b)+

δ

1− δ
E
(
v∗(b, b(θ−i))− v̂

)
,

and define x ≡ δ
1−δ

E
(
v∗(b, b(θ−i))−v̂

)
and x ≡ δ

1−δ
E
(
v∗(b, b(θ−i))−v̂

)
. The incentive

compatibility constraint of a low-type buyer can then be written as:

qn−1

n
(θ − b) + x ≥ 1− qn

n(1− q)
(θ − b) + x. (18)

11See a similar argument in Chapter 11.2 of Mailath and Samuelson (2006) in the context of a

repeated price competition game with adverse selection.
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Observe that for any strongly symmetric public perfect equilibrium satisfying

Assumption 1(b), the continuation equilibria after any public history consistent with

the on-path play of the equilibrium strategies are themselves strongly symmetric public

perfect equilibria satisfying Assumption 1(b), hence we must have x ≤ 0 and x ≤ 0

since v̂ = supV .

The ex ante equilibrium payoff is given by:

(1− δ)
1

n

[
(1− qn)(θ− b) + qn(θ− b)

]
+ (1− q)δ E

(
v∗(b, b(θ−i))

)
+ qδ E

(
v∗(b, b(θ−i))

)
.

Subtracting δv̂ and dividing by (1− δ), we obtain:

1

n

[
(1−qn)(θ−b)+qn(θ−b)

]
+(1−q)

δ

1− δ
E
(
v∗(b, b(θ−i))−v̂

)
+q

δ

1− δ
E
(
v∗(b, b(θ−i))−v̂

)
,

which can be rewritten as:

1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ (1− q)x+ qx.

Combining this expression with the low-type incentive compatibilty constraint in

(18) and our observation that x, x ≤ 0, we must conclude that12:

v̂ =
v̂ − δv̂

1− δ
= sup

v∈Vsep

v − δv̂

1− δ
≤ sup

b,b;x,x

1

n

[
(1− qn)(θ − b) + qn(θ − b)

]
+ (1− q)x+ qx (19)

subject to (IC)
qn−1

n
(θ − b) + x ≥ 1− qn

n(1− q)
(θ − b) + x,

(Feas) x, x ≤ 0.

Let us consider the maximization problem in (19). Clearly the (IC) constraint

must be binding at an optimum: suppose not, then choose b
′
< b such that the

constraint is still satisfied, and this will clearly improve the value of the objective.

Hence, at any optimum of (19), we must have

qn−1

n
(θ − b) + x =

1− qn

n(1− q)
(θ − b) + x,

which we can solve for (1− qn)(θ − b), to obtain:

(1− qn)(θ − b) = (1− q)qn−1(θ − b) + n(1− q)(x− x),

12The solution to this maximization problem provides an upper bound on (normalized) strongly

symmetric equilibrium payoffs since all the other incentive compatibility constraints are ignored,

and the constraint x, x ≤ 0 is necessary for feasibility of continuation values but not sufficient.
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which then implies:

(1− qn)(θ − b) = (1− qn)(θ − θ) + (1− q)qn−1(θ − b) + n(1− q)(x− x). (20)

Plugging (20) into the objective function in (19), we get:

1

n

[
(1− qn)(θ − θ) + (1− q)qn−1(θ − b) + n(1− q)(x− x) + qn(θ − b)

]
+ (1− q)x+ qx

=
1

n
(1− qn)(θ − θ) +

1

n
qn−1(θ − b) + x,

which implies that:

v̂ ≤ sup
b,x

1

n
(1− qn)(θ − θ) +

1

n
qn−1(θ − b) + x subject to x ≤ 0.

The optimum is clearly achieved when b = 0 and x = 0, which means that:

v̂ ≤ 1

n
(1− qn)(θ − θ) +

1

n
qn−1θ = vlrs.

Pooling in the first period. Suppose v̂ = supVpool and consider a strongly sym-

metric public perfect equilibrium in which the buyers separate in the first period,

and let b be the equilibrium action of both types in the first period. Suppose that

v∗ : An → R is the equilibrium continuation value after the first period. The ex ante

equilibrium payoff is:

(1− δ)
1

n

(
(1− q)θ + qθ − b

)
+ δv∗(b, . . . , b)

Subtracting δv̂ and dividing by (1− δ), we obtain:

1

n

(
(1− q)θ + qθ − b

)
+

δ

1− δ
(v∗(b, . . . , b)− v̂)

Denote x ≡ δ
1−δ

(v∗(b, . . . , b)− v̂). As in the separating case, we have x ≤ 0, and

v̂ =
v̂ − δv̂

1− δ
= sup

v∈Vpool

v − δv̂

1− δ
≤ sup

b,x

1

n

(
(1− q)θ + qθ − b

)
+ x subject to x ≤ 0

≤ 1

n

[
(1− q)θ + qθ

]
= vzrp

The direct comparison of vlrs and vzrp establishes the result.
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C Proofs of Lemmas 7, 10, 13

(Existence of solutions to the relaxed programs)

C.1 Proof of Lemma 7

Proof. RM-1 is a linear programming problem. Its feasible set is non-empty and has

a unique vertex, at which (Col-sep-1) and (LowIC) are binding. It therefore remains

to rule out the situation, in which the value of RM-1 is unbounded. The Duality

Theorem of Linear Programming (see e.g. Section 3.2 in Luenberger and Ye (2021))

implies that if the linear programming dual of RM-1 is feasible, then the value of

RM-1 is bounded. The dual of RM-1 is:

Dual-1 : max
λIC,λCol

(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
λCol, s.t.

(I)
[
(1− δ)qn−1 + δqn

]
λIC +

[
qn +

(1− δ)(1− qn)

1− δ(1− q)n

]
λCol = qn,

(II) δλIC + λCol = 1,

(DF) λIC ≥ 0, λCol ≥ 0.

Direct calculation shows that:

lim
δ→1

λIC(δ) =
q(1− qn)

q(1− qn) + qn
(
1− (1− q)n

) > 0,

lim
δ→1

λCol(δ) =
q
(
1− (1− q)n

)
q(1− qn) + qn

(
1− (1− q)n

) > 0,

which implies that the dual of RM-1 is feasible for all sufficiently high δ.

C.2 Proof of Lemma 10

Proof. RM-2 is a linear programming problem. Its feasible set is non-empty and

has a unique vertex, at which (Col-sep-1) and (HighIC-up) are binding. It therefore

remains to rule out the situation, in which the value of RM-2 is unbounded. The

Duality Theorem of Linear Programming (see e.g. Section 3.2 in Luenberger and Ye

(2021)) implies that if the linear programming dual of RM-2 is feasible, then the
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value of RM-2 is bounded. The dual of RM-2 is:

Dual-2 : max
λIC,λCol

(1− δ)(1− qn)(θ − θ)

1− δ(1− q)n
λCol, s.t.

(I) δqnλIC +

[
qn − (1− δ)(1− qn)

1− δ(1− q)n

]
λCol = qn,

(II)

[
(1− δ)

1− qn

1− q
+ δ(1− qn)− n(1− δ)

]
λIC + (1− qn)λCol = 1− qn,

(DF) λIC ≥ 0, λCol ≥ 0.

Direct calculation shows that:

lim
δ→1

λIC(δ) =
(1− q)

(
1− qn

)2
qn
(
1− (1− q)n

)(
n(1− q)− (1− qn)

)
+ (1− q)

(
1− qn

)2 > 0,

lim
δ→1

λCol(δ) =
qn
(
1− (1− q)n

)(
n(1− q)− (1− qn)

)
qn
(
1− (1− q)n

)(
n(1− q)− (1− qn)

)
+ (1− q)

(
1− qn

)2 > 0,

which implies that the dual of RM-2 is feasible for all sufficiently high δ.

C.3 Proof of Lemma 13

Proof. RM-3 is a linear programming problem. Its feasible set is non-empty and has

a unique vertex, at which (HighIC-down) and (HighIC-up) are binding. It therefore

remains to rule out the situation, in which the value of RM-3 is unbounded. The

Duality Theorem of Linear Programming (see e.g. Section 3.2 in Luenberger and Ye

(2021)) implies that if the linear programming dual of RM-3 is feasible, then the

value of RM-3 is bounded. The dual of RM-3 is:

Dual-3 : max
λup,λdown

(1− δ)nqn−1(θ − θ)λdown, s.t.

(I) δqλup +
[
δq − n(1− δ)

]
λdown = q,

(II)

[
1− δq

1− q
− n(1− δ)

1− qn

]
λup +

1− δq

1− q
λdown = 1,

(DF) λup ≥ 0, λdown ≥ 0.

Direct calculation shows that:

lim
δ→1

λup(δ) =
(1− qn)

(
n(1− q) + q

)
n(1− q)(1− qn + q)

> 0,

lim
δ→1

λdown(δ) =
q
(
n(1− q)− (1− qn)

)
n(1− q)(1− qn + q)

> 0,

which implies that the dual of RM-3 is feasible for all sufficiently high δ.
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D Proof of Lemma 11

Proof. We have shown θ < b∗ in the main text. To show b∗ < b
∗
, it suffices to show

that θ − b∗ > θ − b
∗
. Observe that

θ − b∗ =
1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ).

θ − b∗ > θ − b
∗
can then be written as:

1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ) >

1

D(δ)
δqn(1− qn)(1− q)(θ − θ)

⇔
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
> δ(1− qn)(1− q).

It is easy to see that the above inequality holds for all δ whenever:(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
> (1− qn)(1− q). (21)

Recall now that we assume that q ≥ 1−qn

n(1−q)
, which is equivalent to:

n(1− q)2q ≥ (1− qn)(1− q), (22)

and implies that n ≥ 4 (it is easy to verify that (22) is violated for n = 2 and n = 3).

I now show that (22) implies (21) by showing that for n ≥ 4 we have:(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
> n(1− q)2q.

Note that
(
1 − (1 − q)n

)
>

(
1 − (1 − q)2

)
= q(2 − q) for n ≥ 4, hence it suffices

to show that q(2− q)
[
n(1− q)− (1− qn)

]
> n(1− q)2q, which is equivalent to

(2− q)n(1− q)− n(1− q)2 > (2− q)(1− qn)

⇔ n(1− q) > (2− q)(1− qn)

⇔ n(1− q) > (2− q)(1− q)
n−1∑
k=0

qk

⇔ n > (2− q)
n−1∑
k=0

qk = (1− q)
n−1∑
k=0

qk +
n−1∑
k=0

qk = 1− qn +
n−1∑
k=0

qk.

Consider the function f(q) ≡ 1− qn +
∑n−1

k=0 q
k. Differentiating it, we get:

f ′(q) = −nqn−1 +
n−1∑
k=1

kqk−1 > −nqn−1 +
n−1∑
k=1

kqn−1 = qn−1

[ n−1∑
k=1

k − n

]
= qn−1n

(n− 3)

2
,

which is strictly positive since n ≥ 4. f(q) is thus strictly increasing on (0, 1),

moreover f(1) = 1− 1n +
∑n−1

k=0 1
k = n, therefore f(q) < n for all q ∈ (0, 1).
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E Proofs of Lemmas 9, 12, 15

(Full-surplus-extracting collusive public perfect equilibria)

E.1 Proof of Lemma 9

Proof. Full surplus extraction and R∗
fse(δ) ≥ (1 − qn)θ are shown in the main text,

(Eq-payoff), (LowIC) and (Col-sep-1) are satisfied by construction, and (HighIC-up)

is also checked in the main text, hence it remains to check the incentive constraints

(HighIC-down) and (HighIC-on-sch), and the collusiveness constraints (Col-sep-2)

and (Col-pool).

Incentive constraints. Let us start with (HighIC-down). Evaluated at
(
b
∗
, b∗, v∗fse

)
,

it is:

(HighIC-down) (1− δ)
1− qn

n(1− q)
(θ − b

∗
) + δv∗fse ≥ (1− δ)qn−1(θ − b∗).

Plugging b
∗
, b∗, and v∗fse in, we obtain:

(1− δ)(1− qn)

n(1− q)

qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) +
δ

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)
≥ (1− δ)qn−1 qn

(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,
which simplifies to:

1− qn

n(1− q)
(1− δ(1− q)) +

δ

n
(1− qn) ≥ qn−1

(
1− δ(1− q)n

)
⇔ 1− qn

n(1− q)
− qn−1 ≥ −qn−1δ(1− q)n (23)

which is true since the left-hand side of (23) is strictly positive.

Consider now (HighIC-on-sch). Evaluated at
(
b
∗
, b∗, v∗fse

)
, it is:

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b

∗
) ≥ qn−1

n
(θ − b∗).

Plugging b
∗
and b∗ in, we obtain:

1− qn

1− q

qn(1− δ(1− q))(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ≥ qn−1 qn
(
1− δ(1− q)n

)
(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ,
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which simplifies to:

1− qn

1− q
(1− δ(1− q)) ≥ qn−1

(
1− δ(1− q)n

)
⇔ 1− qn

1− q
− δ(1− qn) ≥ qn−1 − qn−1δ(1− q)n

⇔ (1− q)
∑n−1

k=0 q
k

1− q
− δ(1− qn) ≥ qn−1 − qn−1δ(1− q)n

⇔ 1

δ

n−2∑
k=0

qk ≥ (1− qn)− qn−1(1− q)n.

Since 1
δ

∑n−2
k=0 q

k >
∑n−2

k=0 q
k, it is enough to show that

∑n−2
k=0 q

k ≥ (1−qn)−qn−1(1−q)n,

which simplifies to
∑n−2

k=1 q
k + qn ≥ −qn−1(1− q)n, which is clearly true.

Collusiveness constraints. Consider (Col-sep-2) first. Evaluated at
(
b
∗
, b∗, v∗fse

)
, it

is:

(Col-sep-2) v∗fse ≥
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]
n(1− δqn)

.

Plugging b
∗
, b∗, and v∗fse in, we obtain:

1

n

(1− δ)qn(1− qn)(θ − θ)

δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

) ≥
(1− δ)qn(1− qn)

(
1− δ(1− q)n − δq

)
(θ − θ)

n(1− δqn)
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) ,
which simplifies to 1 ≥ 1−δ(1−q)n−δq

1−δqn
, which in turn simplifies to (1 − q)n ≥ −q + qn,

which is clearly true.

Consider (Col-pool) now. Evaluated at
(
b
∗
, b∗, v∗fse

)
, it is:

(Col-pool) v∗fse ≥
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
.

Plugging b
∗
and b∗ in, we obtain:

v∗fse ≥
(
(1− q)qn

(
1− δ(1− q)n

)
− δq2(1− qn)

)
(θ − θ)

n
(
δq
(
1− qn

)
+ qn

(
1− δ(1− q)n

)) . (24)

Consider the numerator of the right-hand side of (24) in the limit as δ goes to 1:

(1− q)qn
(
1− (1− q)n

)
− q2(1− qn) = (1− q)

[
qn
(
1− (1− q)n

)
− q2

n−1∑
k=0

qk
]

= (1− q)

[
qn − qn(1− q)n − q2

n−3∑
k=0

qk − qn − qn+1

]

= (1− q)

[
− qn(1− q)n − q2

n−3∑
k=0

qk − qn+1

]
< 0.

Recall that v∗fse is positive, whereas the right-hand side of (24) goes to a negative

value. By continuity, there is a δ∗ ∈ (0, 1) such that for all δ > δ∗ (Col-pool) is

satisfied.
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E.2 Proof of Lemma 12

Proof. Full surplus extraction and R∗
fse(δ) ≥ (1 − qn)θ are shown in the main text,

(Eq-payoff), (HighIC-up) and (Col-sep-1) are satisfied by construction, (LowIC) and

(HighIC-down) are also checked in the main text, hence it remains to check the

incentive constraint (HighIC-on-sch), and the collusiveness constraints (Col-sep-2)

and (Col-pool).

Incentive constraint. Let us start with (HighIC-on-sch). Evaluated at
(
b
∗
, b∗, v∗fse

)
it is:

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b

∗
) ≥ qn−1

n
(θ − b∗).

Plugging b
∗
and b∗, we obtain:

1− qn

n(1− q)

1

D(δ)
δqn(1− qn)(1− q)(θ − θ)

≥ qn−1

n

1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ),

which is equivalent to:

δ(1− qn)(1− qn) ≥ qn−1
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
,

which is in particular true whenever

δ(1− qn)(1− qn) ≥ qn−1
[
n(1− q)− (1− qn)

]
,

i.e. for all δ satisfying δ ≥ qn−1
[
n(1−q)−(1−qn)

]
(1−qn)(1−qn)

. Note that such δ exist in (0,1) since

(1− qn)(1− qn) > qn−1
[
n(1− q)− (1− qn)

]
(25)

⇔ (1− qn)(1− qn) + qn−1(1− qn) > nqn−1(1− q)

⇔ (1− qn)(1 + qn−1(1− q)) > nqn−1(1− q)

⇔ (1 + qn−1(1− q))
n−1∑
k=0

qk > nqn−1,

where the last inequality is true since
∑n−1

k=0 q
k > nqn−1 and 1 + qn−1(1 − q) > 1.

Thus the high type on-schedule incentive compatibility constraint is satisfied for a

sufficiently high δ.
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Collusiveness constraints. Consider (Col-sep-2) first. Evaluated at
(
b
∗
, b∗, v∗fse

)
, it

is

(Col-sep-2) v∗fse ≥ v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b

∗
) + qn(θ − b∗)

]
n(1− δqn)

.

Plugging b
∗
, b∗ and v∗fse in, we obtain:

1− δ

nD(δ)
qn(1− qn)

[
n(1− q)− (1− qn)

]
(θ − θ) ≥

≥ (1− δ)qn(1− qn)(θ − θ)

n(1− δqn)D(δ)

((
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
−
[
(1− qn)(1− δq)− n(1− δ)(1− q)

])
,

which simplifies to:

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
≥ δ

(
qn − (1− q)n

)[
n(1− q)− (1− qn)

]
,

which can only be satisfied if:

δ ≥ n(1− q)− (1− qn)

n(1− q)− q(1− qn)−
(
qn − (1− q)n

)[
n(1− q)− (1− qn)

] . (26)

Such values of δ exist in (0, 1) only if the right-hand side of (26) is strictly below 1,

i.e. when

(1− qn)(1− q) >
(
qn − (1− q)n

)[
n(1− q)− (1− qn)

]
. (27)

It is easy to show that the above inequality is implied by the parameter restrictions

of Case 2. Those restrictions in particular imply that:

(1− qn)(1− q) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
.

Observe that qn − (1− q)n < qn−1
(
1− (1− q)n

)
, which establishes (27).

Consider (Col-pool) now. Evaluated at
(
b
∗
, b∗, v∗fse

)
, it is

(Col-pool) v∗fse ≥
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
.

Plugging b
∗
and b∗ in, we obtain

v∗fse ≥
1

n

[
(1− q)

1

D(δ)
qn
(
1− δ(1− q)n

)[
n(1− q)− (1− qn)

]
(θ − θ) (28)

− q
1

D(δ)

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]
(1− qn)(θ − θ)

]
.
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I show that the right-hand side of (28) is strictly negative in the limit as δ goes to 1.

In the limit it is given by:

(1− q)(θ − θ)

nD(1)

[
qn
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
− q(1− qn)(1− qn)

]
. (29)

Observe that the expression in (29) is strictly negative if and only if

(1− qn)(1− qn) > qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
,

which is true since (1−qn)(1−qn) > qn−1
[
n(1−q)− (1−qn)

]
, as established by (25).

Recall that v∗fse is positive, whereas the right-hand side of (28) goes to a negative

value. By continuity, there is a δ∗ ∈ (0, 1) such that for all δ > δ∗ (Col-pool) is

satisfied.

E.3 Proof of Lemma 15

Proof. Full surplus extraction and R∗
fse(δ) ≥ (1 − qn)θ are shown in the main text,

(Eq-payoff), (HighIC-up) and (HighIC-down) are satisfied by construction, (LowIC)

and (Col-sep-1) are also checked in the main text, hence it remains to check the

incentive constraint (HighIC-on-sch), and the collusiveness constraints (Col-sep-2)

and (Col-pool).

Incentive constraint. Let us start with (HighIC-on-sch). Evaluated at
(
b
∗
, b∗, v∗fse

)
,

it is:

(HighIC-on-sch)
1− qn

n(1− q)
(θ − b

∗
) ≥ qn−1

n
(θ − b∗).

Note that both θ− b
∗
and θ− b∗ are strictly positive for δ high enough. Observe that

we have θ − b
∗
= qn−1(θ − b∗) in Case 3 by construction, and therefore:

1− qn

n(1− q)
(θ − b

∗
) >

1

n
(θ − b

∗
) =

qn−1

n
(θ − b∗).

where the first inequality is true since 1−qn > 1−q for n ≥ 2 and q ∈ (0, 1), implying

that the high-type on-schedule incentive compatibility is satisfied.

Collusiveness constraints. Consider (Col-sep-2). Evaluated at
(
b
∗
, b∗, v∗fse

)
, it is:

(Col-sep-2) v∗fse ≥ v(b∗ + ϵ, b∗) =
(1− δ)

[
(1− qn)(θ − b∗) + qn(θ − b∗)

]
n
(
1− δqn

) .
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Plugging b
∗
, b∗, and v∗fse in, we obtain:

1

nD(δ)
(1− δ)qn

[
n(1− q)− (1− qn)

]
(θ − θ) (30)

≥ (1− δ)(θ − θ)

nD(δ)
(
1− δqn

)[(1− qn)δq(1− q)− qn
[
(1− qn)(1− δq)− n(1− δ)(1− q)

]]
,

which is equivalent to:

qn
[
n(1− q)− (1− qn)

]
≥ 1(

1− δqn
)[(1− qn)δq(1− q)− qn

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]]
,

which holds for high enough δ whenever it holds as a strict inequality at δ = 1, i.e.

whenever

qn
[
n(1− q)− (1− qn)

]
>

1(
1− qn

)[(1− qn)q(1− q)− qn(1− qn)(1− q)
]

⇔ qn−1
[
n(1− q)− (1− qn)

]
> (1− q)(1− qn−1). (31)

The inequality in (31) is true since:

(1− q)(1− qn−1) < (1− q)(1− qn) ≤ qn−1
(
1− (1− q)n

)[
n(1− q)− (1− qn)

]
,

where the second inequality is true in Case 3 by assumption.

Consider (Col-pool). Evaluated at
(
b
∗
, b∗, v∗fse

)
, it is

(Col-pool) v∗fse ≥
1

n

[
(1− q)(θ − b∗) + q(θ − b∗)

]
.

Plugging b
∗
and b∗ in, we obtain:

v∗fse ≥
θ − θ

nD(δ)

[
(1− q)δq(1− q)− q

[
(1− qn)(1− δq)− n(1− δ)(1− q)

]]
. (32)

As in the previous two cases, I show that the right-hand side of (32) goes to a

negative value as δ goes to 1. Indeed the limit of the right-hand side of (32) is given

by:

θ − θ

nD(1)

[
(1− q)q(1− q)− q(1− qn)(1− q)

]
=

q(1− q)(θ − θ)

nD(1)

[
qn − q

]
< 0.

Recall that v∗fse is positive, hence, by continuity, there is a δ∗ ∈ (0, 1) such that for all

δ > δ∗ (Col-pool) is satisfied.
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